dist_se_resnext.py 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25 26 27 28 29 30
import numpy as np
import argparse
import time
import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import sys
import signal
T
typhoonzero 已提交
31
from test_dist_base import TestDistRunnerBase, runtime_main
32

P
pangyoki 已提交
33 34
paddle.enable_static()

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

68 69 70 71 72 73 74 75 76 77
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=7,
                                      stride=2,
                                      act='relu')
            conv = fluid.layers.pool2d(input=conv,
                                       pool_size=3,
                                       pool_stride=2,
                                       pool_padding=1,
                                       pool_type='max')
78 79 80 81 82 83
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

84 85 86 87 88 89 90 91 92 93
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=7,
                                      stride=2,
                                      act='relu')
            conv = fluid.layers.pool2d(input=conv,
                                       pool_size=3,
                                       pool_stride=2,
                                       pool_padding=1,
                                       pool_type='max')
94 95 96 97 98 99
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=3,
                                      stride=2,
                                      act='relu')
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=64,
                                      filter_size=3,
                                      stride=1,
                                      act='relu')
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=128,
                                      filter_size=3,
                                      stride=1,
                                      act='relu')
115 116 117 118 119 120 121 122 123 124 125 126 127
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

128 129 130 131
        pool = fluid.layers.pool2d(input=conv,
                                   pool_size=7,
                                   pool_type='avg',
                                   global_pooling=True)
132 133
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
W
Wu Yi 已提交
134 135 136 137
        out = fluid.layers.fc(
            input=drop,
            size=class_dim,
            act='softmax',
138 139
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)))
140 141 142 143 144 145 146 147 148 149 150 151
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        conv0 = self.conv_bn_layer(input=input,
                                   num_filters=num_filters,
                                   filter_size=1,
                                   act='relu')
        conv1 = self.conv_bn_layer(input=conv0,
                                   num_filters=num_filters,
                                   filter_size=3,
                                   stride=stride,
                                   groups=cardinality,
                                   act='relu')
        conv2 = self.conv_bn_layer(input=conv1,
                                   num_filters=num_filters * 2,
                                   filter_size=1,
                                   act=None)
        scale = self.squeeze_excitation(input=conv2,
                                        num_channels=num_filters * 2,
                                        reduction_ratio=reduction_ratio)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
M
minqiyang 已提交
186
            padding=(filter_size - 1) // 2,
187 188
            groups=groups,
            act=None,
W
Wu Yi 已提交
189
            # avoid pserver CPU init differs from GPU
190 191
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
192 193 194 195
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
196 197 198 199
        pool = fluid.layers.pool2d(input=input,
                                   pool_size=0,
                                   pool_type='avg',
                                   global_pooling=True)
200
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
W
Wu Yi 已提交
201 202 203
        squeeze = fluid.layers.fc(
            input=pool,
            size=num_channels // reduction_ratio,
204 205
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
W
Wu Yi 已提交
206
            act='relu')
207
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
W
Wu Yi 已提交
208 209 210
        excitation = fluid.layers.fc(
            input=squeeze,
            size=num_channels,
211 212
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
W
Wu Yi 已提交
213
            act='sigmoid')
214 215 216 217
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


T
typhoonzero 已提交
218
class DistSeResneXt2x2(TestDistRunnerBase):
219

220
    def get_model(self, batch_size=2, use_dgc=False):
T
typhoonzero 已提交
221
        # Input data
222 223 224
        image = fluid.layers.data(name="data",
                                  shape=[3, 224, 224],
                                  dtype='float32')
T
typhoonzero 已提交
225
        label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
226

T
typhoonzero 已提交
227 228 229 230
        # Train program
        model = SE_ResNeXt(layers=50)
        out = model.net(input=image, class_dim=102)
        cost = fluid.layers.cross_entropy(input=out, label=label)
231

T
typhoonzero 已提交
232 233 234
        avg_cost = fluid.layers.mean(x=cost)
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
235

T
typhoonzero 已提交
236 237
        # Evaluator
        test_program = fluid.default_main_program().clone(for_test=True)
238

T
typhoonzero 已提交
239 240 241 242
        # Optimization
        total_images = 6149  # flowers
        epochs = [30, 60, 90]
        step = int(total_images / batch_size + 1)
243

T
typhoonzero 已提交
244 245 246
        bd = [step * e for e in epochs]
        base_lr = 0.1
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
247

248 249
        if not use_dgc:
            optimizer = fluid.optimizer.Momentum(
250 251
                learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                           values=lr),
252 253 254 255
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
        else:
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
256 257
                learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                           values=lr),
258 259 260
                momentum=0.9,
                rampup_begin_step=0,
                regularization=fluid.regularizer.L2Decay(1e-4))
T
typhoonzero 已提交
261
        optimizer.minimize(avg_cost)
262

T
typhoonzero 已提交
263
        # Reader
264 265 266 267
        train_reader = paddle.batch(paddle.dataset.flowers.test(use_xmap=False),
                                    batch_size=batch_size)
        test_reader = paddle.batch(paddle.dataset.flowers.test(use_xmap=False),
                                   batch_size=batch_size)
268

T
typhoonzero 已提交
269
        return test_program, avg_cost, train_reader, test_reader, acc_top1, out
270 271 272


if __name__ == "__main__":
T
typhoonzero 已提交
273
    runtime_main(DistSeResneXt2x2)