test_conv3d_layer.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
20 21
import paddle
from paddle.fluid.framework import _test_eager_guard
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
import unittest


class Conv3DTestCase(unittest.TestCase):
    def __init__(self,
                 methodName='runTest',
                 batch_size=4,
                 spartial_shape=(8, 8, 8),
                 num_channels=6,
                 num_filters=8,
                 filter_size=3,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=1,
                 no_bias=False,
                 data_format="NCDHW",
                 dtype="float32"):
        super(Conv3DTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NDHWC"
        if self.channel_last:
            input_shape = (self.batch_size, ) + self.spartial_shape + (
                self.num_channels, )
        else:
            input_shape = (self.batch_size, self.num_channels
                           ) + self.spartial_shape
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 3
        else:
            filter_size = self.filter_size
        self.weight_shape = weight_shape = (self.num_filters, self.num_channels
                                            // self.groups) + tuple(filter_size)
        self.weight = np.random.uniform(
            -1, 1, size=weight_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(
                -1, 1, size=(self.num_filters, )).astype(self.dtype)
        else:
            self.bias = None

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
                y_var = fluid.layers.conv3d(
                    x_var,
                    self.num_filters,
                    self.filter_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
                    data_format=self.data_format)
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1, -1, self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                b_var = fluid.data(
                    "bias", (self.num_filters, ), dtype=self.dtype)
                y_var = F.conv3d(
                    x_var,
                    w_var,
                    None if self.no_bias else b_var,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format)
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def paddle_nn_layer(self):
139 140
        x_var = paddle.to_tensor(self.input)
        x_var.stop_gradient = False
C
cnn 已提交
141
        conv = nn.Conv3D(
142 143 144 145 146 147 148
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
149
            data_format=self.data_format)
150 151 152 153
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
        y_var = conv(x_var)
154
        y_var.backward()
155
        y_np = y_var.numpy()
156 157
        t1 = x_var.gradient()
        return y_np, t1
158 159 160 161 162 163

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
164 165 166
            result3, g1 = self.paddle_nn_layer()
            with _test_eager_guard():
                res_eager, g2 = self.paddle_nn_layer()
167 168
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)
169 170
        self.assertTrue(np.allclose(result3, res_eager))
        self.assertTrue(np.allclose(g1, g2))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv3DErrorTestCase(Conv3DTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
    suite.addTest(Conv3DTestCase(methodName='runTest'))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', stride=[1, 2, 1], dilation=2))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', stride=2, dilation=(2, 1, 2)))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', padding="same", no_bias=True))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', filter_size=(3, 2, 3), padding='valid'))
    suite.addTest(Conv3DTestCase(methodName='runTest', padding=(2, 3, 1)))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', padding=[1, 2, 2, 1, 2, 3]))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest',
            padding=[[0, 0], [0, 0], [1, 2], [2, 1], [2, 2]]))
    suite.addTest(Conv3DTestCase(methodName='runTest', data_format="NDHWC"))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest',
            data_format="NDHWC",
            padding=[[0, 0], [1, 1], [3, 3], [2, 2], [0, 0]]))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest', groups=2, padding="valid"))
    suite.addTest(
        Conv3DTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid"))


def add_error_cases(suite):
    suite.addTest(
        Conv3DErrorTestCase(
            methodName='runTest', num_channels=5, groups=2))
233 234 235
    suite.addTest(
        Conv3DErrorTestCase(
            methodName='runTest', num_channels=5, groups=2, padding=[-1, 1, 3]))
236 237 238 239 240 241 242 243 244 245 246


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()