data_flow_graph.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * Data flow graph is an pass that build the basic graph. It contains a graph
 * and the iterators that enable the iteration over the graph.
 */

#pragma once

#include <deque>
#include <stack>
24
#include <string>
25
#include <unordered_set>
26 27
#include <utility>
#include <vector>
28

29
#include "paddle/fluid/framework/ir/graph.h"
30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/inference/analysis/graph_traits.h"
#include "paddle/fluid/inference/analysis/node.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace analysis {

/*
 * DataFlowGraph - A container of Value and Function Nodes.
S
Superjomn 已提交
40 41
 *
 * This is the base graph for any other type of graphs, such as SSA or CFG.
42 43 44
 */
struct DataFlowGraph {
  NodeMap nodes;
45 46 47
  // inputs and outputs are deduced from the graph.
  // Used to interact with IR.
  const framework::ir::Graph *ir_graph{nullptr};
48 49 50 51

  // Extract inputs and outputs of the graph.
  void Build();

52 53 54 55 56 57 58 59
  void Build(const framework::proto::ProgramDesc &prog);

  // Build a graph from ir::Graph.
  void Build(const framework::ir::Graph &graph);

  // Get an attribute.
  AnyAttr &Attr(const std::string &key) { return attrs_[key]; }

60 61
  // Output a DOT graph file for debug.
  std::string DotString() const;
62

Y
Yan Chunwei 已提交
63 64 65
  std::string HumanReadableInfo(bool show_values = true,
                                bool show_functions = true) const;

66 67 68 69 70 71 72 73 74 75 76
  const std::vector<Node *> &inputs() const {
    PADDLE_ENFORCE(!inputs_.empty(),
                   "No inputs are deduced, need to Build() first.");
    return inputs_;
  }
  const std::vector<Node *> &outputs() const {
    PADDLE_ENFORCE(!outputs_.empty(),
                   "No outputs are deduced, need to Build() first.");
    return outputs_;
  }

77
 private:
78 79 80 81
  mutable std::vector<Node *> inputs_;
  mutable std::vector<Node *> outputs_;
  std::unordered_map<std::string, AnyAttr> attrs_;

82 83
  // Remove duplicate edges and so on.
  void Clean();
84 85 86 87 88 89 90 91 92 93 94 95 96 97
};

/*
 * An graph trait help to traverse the graph using BFS.
 * The BFS start from a graph's inputs, the graph should be fully-connected, so
 * that the iterator can reach the end.
 */
template <>
struct GraphTraits<DataFlowGraph> {
  // BFS iterator on nodes.
  struct NodesBFSIterator
      : public std::iterator<std::forward_iterator_tag, Node *> {
    NodesBFSIterator() = default;
    explicit NodesBFSIterator(const std::vector<Node *> &source);
98
    NodesBFSIterator(NodesBFSIterator &&other) noexcept;
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    // NOTE Heavy to use.
    NodesBFSIterator(const NodesBFSIterator &other);

    Node &operator*();
    NodesBFSIterator &operator++();
    Node *operator->();
    // TODO(Superjomn) current implementation just compare the first
    // element, need to compare the graph and all the elements in the queue and
    // set.
    NodesBFSIterator &operator=(const NodesBFSIterator &other);
    bool operator==(const NodesBFSIterator &other);
    bool operator!=(const NodesBFSIterator &other) { return !(*this == other); }

   private:
    std::deque<Node *> queue_;
    std::unordered_set<Node *> visited_;
  };

  // DFS iterator on nodes.
  struct NodesDFSIterator
      : public std::iterator<std::forward_iterator_tag, Node *> {
    NodesDFSIterator() = default;
121 122
    NodesDFSIterator(const std::vector<Node *> &source);
    NodesDFSIterator(NodesDFSIterator &&other) noexcept;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    NodesDFSIterator(const NodesDFSIterator &other);

    Node &operator*();
    NodesDFSIterator &operator++();
    // TODO(Superjomn) current implementation just compare the first
    // element, need to compare the graph and all the elements in the queue and
    // set.
    NodesDFSIterator &operator=(const NodesDFSIterator &other);
    bool operator==(const NodesDFSIterator &other);
    bool operator!=(const NodesDFSIterator &other) { return !(*this == other); }
    Node *operator->();

   private:
    std::stack<Node *> stack_;
    std::unordered_set<Node *> visited_;
  };

Y
Yan Chunwei 已提交
140 141 142 143
  // Topological sorting iterator on nodes.
  struct NodesTSIterator
      : public std::iterator<std::forward_iterator_tag, Node *> {
    NodesTSIterator() = default;
144
    NodesTSIterator(const std::vector<Node *> &source);
Y
Yan Chunwei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    NodesTSIterator(NodesTSIterator &&other)
        : sorted_(std::move(other.sorted_)), cursor_(other.cursor_) {
      other.cursor_ = 0;
    }
    NodesTSIterator(const NodesTSIterator &other);

    Node &operator*();
    NodesTSIterator &operator++();
    // TODO(Superjomn) current implementation just compare the first
    // element, need to compare the graph and all the elements in the queue and
    // set.
    NodesTSIterator &operator=(const NodesTSIterator &other);
    bool operator==(const NodesTSIterator &other);
    bool operator!=(const NodesTSIterator &other) { return !(*this == other); }
    Node *operator->();

   private:
    std::vector<Node *> sorted_;
163
    size_t cursor_{0};
Y
Yan Chunwei 已提交
164 165
  };

166
  explicit GraphTraits(const DataFlowGraph &graph) : graph_(graph) {}
167 168 169 170 171 172 173 174 175 176 177

  // default use BFS to visit the nodes.
  iterator_range<NodesBFSIterator> nodes() {
    return iterator_range<NodesBFSIterator>(nodes_bfs_begin(), nodes_bfs_end());
  }
  iterator_range<NodesBFSIterator> nodes_in_BFS() {
    return iterator_range<NodesBFSIterator>(nodes_bfs_begin(), nodes_bfs_end());
  }
  iterator_range<NodesDFSIterator> nodes_in_DFS() {
    return iterator_range<NodesDFSIterator>(nodes_dfs_begin(), nodes_dfs_end());
  }
Y
Yan Chunwei 已提交
178 179 180
  iterator_range<NodesTSIterator> nodes_in_TS() {
    return iterator_range<NodesTSIterator>(nodes_ts_begin(), nodes_ts_end());
  }
181 182 183

 private:
  NodesBFSIterator nodes_bfs_begin() {
184
    return NodesBFSIterator(graph_.inputs());
185 186
  }
  NodesBFSIterator nodes_bfs_end() { return NodesBFSIterator(); }
Y
Yan Chunwei 已提交
187

188
  NodesDFSIterator nodes_dfs_begin() {
189
    return NodesDFSIterator(graph_.inputs());
190 191 192
  }
  NodesDFSIterator nodes_dfs_end() { return NodesDFSIterator(); }

193
  NodesTSIterator nodes_ts_begin() { return NodesTSIterator(graph_.inputs()); }
Y
Yan Chunwei 已提交
194 195
  NodesTSIterator nodes_ts_end() { return NodesTSIterator(); }

196
 private:
197
  const DataFlowGraph &graph_;
198 199 200 201 202
};

// Extract the inputs and outputs of a graph. The inputs and outputs of a
// sub-graph is the inputs nodes and output nodes that doesn't inside the
// sub-graph.
203
std::pair<std::vector<Node *>, std::vector<Node *>>
G
gongweibao 已提交
204
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph);  // NOLINT
205

N
nhzlx 已提交
206
void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph);
207 208 209
void FlexibleDFS(const std::vector<Node *> &source, bool reverse,
                 const std::function<bool(const Node *)> &enter,
                 const std::function<bool(const Node *)> &leave);
210 211 212
}  // namespace analysis
}  // namespace inference
}  // namespace paddle