ir_pass_manager.cc 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
16

17
#include <map>
18
#include <memory>
19
#include <string>
20
#include <unordered_map>
21 22
#include <unordered_set>
#include <utility>
L
luotao1 已提交
23
#include <vector>
24

Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26 27
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
28
#include "paddle/fluid/inference/analysis/argument.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/string/pretty_log.h"
30 31 32 33

namespace paddle {
namespace inference {
namespace analysis {
Y
Yan Chunwei 已提交
34
using string::PrettyLog;
35
using string::PrettyLogEndl;
Y
Yan Chunwei 已提交
36
using string::Style;
37

38
IRPassManager::IRPassManager(Argument *argument) {
39
  disable_logs_ = argument->disable_logs();
40 41 42

  ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
  CreatePasses(argument, argument->ir_analysis_passes());
43 44
}

45 46
void IRPassManager::CreatePasses(Argument *argument,
                                 const std::vector<std::string> &passes) {
47
  std::string pre_pass;
L
luotao1 已提交
48
  int pass_num = 0;
49
  for (const std::string &pass_name : passes) {
50
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
51
    pass->Set("use_varseqlen", new bool(argument->tensorrt_use_varseqlen()));
52 53
    pass->Set("with_interleaved",
              new bool(argument->tensorrt_with_interleaved()));
54 55 56 57
    pass->Set("tensorrt_transformer_posid",
              new std::string(argument->tensorrt_transformer_posid()));
    pass->Set("tensorrt_transformer_maskid",
              new std::string(argument->tensorrt_transformer_maskid()));
58 59 60 61
    pass->Set("disable_logs", new bool(argument->disable_logs()));
    auto precision_mode = argument->tensorrt_precision_mode();
    bool enable_int8 = precision_mode == AnalysisConfig::Precision::kInt8;
    pass->Set("enable_int8", new bool(enable_int8));
W
Wilber 已提交
62 63 64 65 66 67 68 69 70
    pass->Set("max_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->max_input_shape()));
    pass->Set("min_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->min_input_shape()));
    pass->Set("optim_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->optim_input_shape()));
71 72 73 74 75 76 77 78 79
    // Now, shape tensor value is not explicit set by user,
    // it is collected through API CollectShapeRangeInfo.
    pass->Set("max_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("min_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("optim_shape_tensor",
              new std::map<std::string, std::vector<int>>());

80 81 82 83 84 85 86 87
    // tuned trt dynamic_shape
    pass->Set("trt_tuned_dynamic_shape",
              new bool(argument->tensorrt_tuned_dynamic_shape()));
    bool with_dynamic_shape = (argument->max_input_shape().size() > 0 &&
                               argument->min_input_shape().size() > 0 &&
                               argument->optim_input_shape().size() > 0) ||
                              argument->tensorrt_tuned_dynamic_shape();
    pass->Set("with_dynamic_shape", new bool(with_dynamic_shape));
88

89
    pass->Set("model_precision", new int(argument->model_precision()));
90 91 92
    pass->Set(
        "mixed_black_list",
        new std::unordered_set<std::string>(argument->mixed_black_list()));
93

94
    if (pass_name == "graph_viz_pass") {
95 96 97 98 99 100 101 102 103 104
      std::string optim_cache_dir = argument->optim_cache_dir();
      std::string dot_file_path;
      if (optim_cache_dir.empty()) {
        dot_file_path = std::to_string(pass_num) + "_ir_" +
                        (pre_pass.empty() ? "origin" : pre_pass) + ".dot";
      } else {
        dot_file_path = optim_cache_dir + "/" + std::to_string(pass_num) +
                        "_ir_" + (pre_pass.empty() ? "origin" : pre_pass) +
                        ".dot";
      }
105
      pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
106
      pass->Set("optim_cache_dir", new std::string(std::move(optim_cache_dir)));
L
luotao1 已提交
107
      pass_num++;
108
    } else if (pass_name == "mkldnn_placement_pass") {
109 110 111
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->mkldnn_enabled_op_types()));
112 113 114
    } else if (pass_name == "cudnn_placement_pass") {
      pass->Set("cudnn_enabled_op_types",
                new std::unordered_set<std::string>());
115
#ifdef PADDLE_WITH_MKLDNN
116 117 118 119 120 121 122
    } else if (pass_name == "cpu_quantize_placement_pass") {
      pass->Set("quantize_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->quantize_enabled_op_types()));
      pass->Set(
          "quantize_excluded_op_ids",
          new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
123
    } else if (pass_name == "cpu_quantize_pass") {
B
baoachun 已提交
124 125 126 127
      if (argument->quantize_enabled_op_types().count("conv2d") ||
          argument->quantize_enabled_op_types().count("depthwise_conv2d")) {
        pass->Set("data_layout", new std::string("NHWC"));
      }
128 129
      pass->Set("quant_var_scales",
                new VarQuantScale(argument->quant_var_scales()));
130 131 132 133
    } else if (pass_name == "cpu_bfloat16_placement_pass") {
      pass->Set("bfloat16_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->bfloat16_enabled_op_types()));
134
#endif
135
    } else if (pass_name == "tensorrt_subgraph_pass") {
136 137
      pass->Set("workspace_size",
                new int64_t(argument->tensorrt_workspace_size()));
138
      pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size()));
139 140
      pass->Set("min_subgraph_size",
                new int(argument->tensorrt_min_subgraph_size()));
N
nhzlx 已提交
141 142
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
143
      pass->Set("predictor_id", new int(argument->predictor_id()));
144 145
      bool use_calib_mode = argument->tensorrt_use_calib_mode();
      pass->Set("use_calib_mode", new bool(use_calib_mode));
Z
Zhaolong Xing 已提交
146 147
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
148 149
      pass->Set("context_memory_sharing",
                new bool(argument->trt_engine_memory_sharing()));
150 151
      bool use_static_engine = argument->tensorrt_use_static_engine();
      bool model_from_memory = argument->model_from_memory();
152
      std::string optim_cache_dir = argument->optim_cache_dir();
153 154
      bool int8_valid = !(model_from_memory && optim_cache_dir.empty() &&
                          enable_int8 && use_calib_mode);
155
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
156 157
          int8_valid,
          true,
158 159 160 161
          platform::errors::PreconditionNotMet(
              "When you are in TRT INT8 mode, and load model from "
              "memory, you should set optim_cache_dir using "
              "config.SetOptimCacheDir()"));
162 163
      if (model_from_memory && use_static_engine) {
        PADDLE_ENFORCE_EQ(
W
Wilber 已提交
164 165
            optim_cache_dir.empty(),
            false,
166 167 168 169 170 171
            platform::errors::PreconditionNotMet(
                "When you are using Paddle-TRT, and using load model "
                "from memory, and also set the use_static to true. "
                "you must set optim_cache_dir using "
                "config.SetOptimCacheDir()."));
      }
N
nhzlx 已提交
172

173
      if (!optim_cache_dir.empty()) {
174 175
        if (!PathExists(optim_cache_dir)) {
          PADDLE_ENFORCE_NE(
W
Wilber 已提交
176 177
              MKDIR(optim_cache_dir.c_str()),
              -1,
178 179 180 181 182
              platform::errors::PreconditionNotMet(
                  "Can not create optimize cache directory: %s, Make sure you "
                  "have permission to write",
                  optim_cache_dir));
        }
183 184
        pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
      } else if (use_static_engine || enable_int8) {
185 186 187 188 189 190 191 192
        std::string model_opt_cache_dir =
            argument->Has("model_dir")
                ? argument->model_dir()
                : GetDirRoot(argument->model_program_path());
        pass->Set(
            "model_opt_cache_dir",
            new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
      }
N
nhzlx 已提交
193
      pass->Set("gpu_device_id", new int(argument->gpu_device_id()));
194
      pass->Set("use_static_engine", new bool(use_static_engine));
195
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
196
      pass->Set("use_inspector", new bool(argument->tensorrt_use_inspector()));
197 198 199 200 201 202

      // tuned trt dynamic_shape
      pass->Set("trt_shape_range_info_path",
                new std::string(argument->tensorrt_shape_range_info_path()));
      pass->Set("trt_allow_build_at_runtime",
                new bool(argument->tensorrt_allow_build_at_runtime()));
W
Wilber 已提交
203 204 205
      pass->Set(
          "trt_disabled_ops",
          new std::vector<std::string>(argument->tensorrt_disabled_ops()));
206 207
      pass->Set("trt_use_dla", new bool(argument->tensorrt_use_dla()));
      pass->Set("trt_dla_core", new int(argument->tensorrt_dla_core()));
208
      // Setting the disable_trt_plugin_fp16 to true means that TRT plugin will
209
      // not run fp16.
210 211
      pass->Set("disable_trt_plugin_fp16",
                new bool(argument->disable_trt_plugin_fp16()));
D
denglin-github 已提交
212
    } else if (pass_name == "dlnne_subgraph_pass") {
D
denglin-github 已提交
213
      auto precision_mode = argument->dlnne_precision_mode();
D
denglin-github 已提交
214 215
      pass->Set("min_subgraph_size",
                new int(argument->dlnne_min_subgraph_size()));
D
denglin-github 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229
      pass->Set("max_batch_size", new int(argument->dlnne_max_batch_size()));
      pass->Set("use_static_batch",
                new bool(argument->dlnne_use_static_batch()));
      pass->Set("weight_share_mode",
                new std::string(argument->dlnne_weight_share_mode()));
      pass->Set("disable_nodes_by_outputs",
                new std::unordered_set<std::string>(
                    argument->dlnne_disable_nodes_by_outputs()));
      pass->Set("use_calib_mode", new bool(argument->dlnne_use_calib_mode()));
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
      pass->Set("input_shape_dict",
                new std::map<std::string, std::vector<int64_t>>(
                    argument->dlnne_input_shape_dict()));
D
denglin-github 已提交
230 231
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
232
    }
石晓伟 已提交
233
    if (pass_name == "lite_subgraph_pass") {
234
      bool lite_enable_int8 =
石晓伟 已提交
235 236 237 238 239 240
          argument->lite_precision_mode() == AnalysisConfig::Precision::kInt8;
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
      pass->Set("lite_ops_filter",
                new std::vector<std::string>(argument->lite_ops_filter()));
      pass->Set("predictor_id", new int(argument->predictor_id()));
241 242
      pass->Erase("enable_int8");
      pass->Set("enable_int8", new bool(lite_enable_int8));
石晓伟 已提交
243
      pass->Set("use_gpu", new bool(argument->use_gpu()));
244 245 246 247
      pass->Set("zero_copy", new bool(argument->lite_zero_copy()));
      pass->Set("use_xpu", new bool(argument->use_xpu()));
      pass->Set("xpu_l3_workspace_size",
                new int(argument->xpu_l3_workspace_size()));
248
      pass->Set("use_opencl", new bool(argument->use_opencl()));
W
Wilber 已提交
249 250
      pass->Set("cpu_math_library_num_threads",
                new int(argument->cpu_math_library_num_threads()));
W
Wilber 已提交
251 252 253 254 255 256
      pass->Set("locked", new bool(argument->xpu_locked()));
      pass->Set("autotune", new bool(argument->xpu_autotune()));
      pass->Set("autotune_file",
                new std::string(argument->xpu_autotune_file()));
      pass->Set("precision", new std::string(argument->xpu_precision()));
      pass->Set("adaptive_seqlen", new bool(argument->xpu_adaptive_seqlen()));
257
      pass->Set("xpu_device_id", new int(argument->xpu_device_id()));
258 259
      pass->Set("enable_multi_stream",
                new bool(argument->xpu_enable_multi_stream()));
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      // NNAdapter Related
      pass->Set("use_nnadapter", new bool(argument->use_nnadapter()));
      pass->Set("nnadapter_model_cache_dir",
                new std::string(argument->nnadapter_model_cache_dir()));
      pass->Set(
          "nnadapter_device_names",
          new std::vector<std::string>(argument->nnadapter_device_names()));
      pass->Set("nnadapter_context_properties",
                new std::string(argument->nnadapter_context_properties()));
      pass->Set("nnadapter_subgraph_partition_config_buffer",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_buffer()));
      pass->Set("nnadapter_subgraph_partition_config_path",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_path()));
      pass->Set("nnadapter_model_cache_buffer",
                new std::vector<std::vector<char>>(
                    argument->nnadapter_model_cache_buffer()));
      pass->Set("nnadapter_model_cache_token",
                new std::vector<std::string>(
                    argument->nnadapter_model_cache_token()));
石晓伟 已提交
281
    }
282 283
    if (pass_name == "fc_fuse_pass") {
      pass->Set("use_gpu", new bool(argument->use_gpu()));
284 285 286 287 288 289 290 291
      bool fc_mkldnn_pass = 0;
      for (const std::string &pass_n : passes) {
        if (pass_n == "fc_mkldnn_pass") {
          fc_mkldnn_pass = 1;
        }
      }
      bool use_fc_padding = !fc_mkldnn_pass && argument->use_fc_padding();
      pass->Set("use_fc_padding", new bool(use_fc_padding));
292
    }
293
    pre_pass = pass_name;
294 295

    passes_.emplace_back(std::move(pass));
296 297 298
  }
}

299 300 301 302
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
  if (passes_.empty()) {
    return graph;
  }
W
Wilber 已提交
303 304 305
  PADDLE_ENFORCE_NOT_NULL(
      graph.get(),
      platform::errors::PreconditionNotMet("Graph cannot be NULL."));
306 307
  // Apply all the passes
  for (const auto &pass : passes_) {
308
    if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
Y
Yan Chunwei 已提交
309 310
      PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
    }
311 312 313 314 315
    // delete_fill_constant_op_pass is not apply under trt dynamic shape
    if (pass->Type() == "delete_fill_constant_op_pass") {
      bool use_dynamic = pass->Get<bool>("with_dynamic_shape");
      if (use_dynamic) continue;
    }
316
    graph.reset(pass->Apply(graph.release()));
317
  }
G
Gabor Buella 已提交
318
  return graph;
319 320 321
}

framework::proto::ProgramDesc IRPassManager::AcquireProgram(
N
nhzlx 已提交
322
    std::unique_ptr<Graph> *graph, ProgramDesc *program) const {
323 324 325
  auto pass =
      framework::ir::PassRegistry::Instance().Get("graph_to_program_pass");

N
nhzlx 已提交
326 327
  // Direct using ProgramDesc desc(argument->main_program()) may cause
  // incomplete copies of information.
N
nhzlx 已提交
328
  ProgramDesc desc;
N
nhzlx 已提交
329
  desc.CopyFrom(*program->Proto());
330 331
  pass->SetNotOwned("program", &desc);
  auto *the_graph = graph->release();
332
  graph->reset(pass->Apply(the_graph));
333 334 335
  return *desc.Proto();
}

336 337 338
}  // namespace analysis
}  // namespace inference
}  // namespace paddle