eager_py_layer.cc 25.8 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <set>
#include <string>
#include <vector>

#pragma GCC diagnostic ignored "-Wattributes"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/pylayer/py_layer_node.h"
23
#include "paddle/fluid/eager/saved_tensors_hooks.h"
W
wanghuancoder 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "pybind11/detail/internals.h"
36
#include "pybind11/pytypes.h"
37 38
#pragma GCC diagnostic ignored "-Wwrite-strings"
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
W
wanghuancoder 已提交
39 40 41 42 43 44 45 46 47

namespace paddle {
namespace pybind {

namespace py = ::pybind11;

PyTypeObject* p_pylayer_type;
extern PyTypeObject* p_tensor_type;

48
std::set<paddle::experimental::Tensor*> GetTensorsFromPyObject(PyObject* obj) {
W
wanghuancoder 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  std::set<paddle::experimental::Tensor*> result;
  if (obj == nullptr) {
    return result;
  }
  if (IsEagerTensor(obj)) {
    result.insert(&reinterpret_cast<TensorObject*>(obj)->tensor);  // NOLINT
  } else if (PyList_Check(obj)) {
    Py_ssize_t len = PyList_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
      if (IsEagerTensor(PyList_GetItem(obj, i))) {
        result.insert(
            &reinterpret_cast<TensorObject*>(PyList_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  } else if (PyTuple_Check(obj)) {
    Py_ssize_t len = PyTuple_Size(obj);
    for (Py_ssize_t i = 0; i < len; i++) {
      if (IsEagerTensor(PyTuple_GetItem(obj, i))) {
        result.insert(
            &reinterpret_cast<TensorObject*>(PyTuple_GetItem(obj, i))  // NOLINT
                 ->tensor);
      }
    }
  }
  return result;
}

PyObject* PyLayerNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
  PyObject* obj = type->tp_alloc(type, 0);
  if (obj) {
    auto v = reinterpret_cast<PyLayerObject*>(obj);
    v->materialize_grads = true;
82
    v->container_be_packed = false;
W
wanghuancoder 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96
    new (&v->grad_node) std::weak_ptr<egr::GradNodePyLayer>();
    new (&v->forward_input_tensor_is_duplicable) std::vector<bool>();
    new (&v->forward_output_tensor_is_duplicable) std::vector<bool>();
  }
  return obj;
}

static void PyLayerDealloc(PyLayerObject* self) {
  if (self->container) {
    Py_DECREF(self->container);
  }
  if (self->non_differentiable) {
    Py_DECREF(self->non_differentiable);
  }
97 98
  if (self->not_inplace_tensors) {
    Py_DECREF(self->not_inplace_tensors);
W
wanghuancoder 已提交
99 100
  }
  self->grad_node.~weak_ptr<egr::GradNodePyLayer>();
101
  self->unpack_hook = nullptr;
W
wanghuancoder 已提交
102 103 104 105 106 107 108 109 110 111 112 113
  self->forward_input_tensor_is_duplicable.~vector();
  self->forward_output_tensor_is_duplicable.~vector();
  Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}

PyObject* pylayer_method_name(PyObject* self, PyObject* noargs) {
  EAGER_TRY
  return ToPyObject(
      reinterpret_cast<PyLayerObject*>(self)->grad_node.lock()->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127
PyObject* new_tensor_with_impl(paddle::experimental::Tensor* tensor) {
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
  if (obj) {
    auto v = reinterpret_cast<TensorObject*>(obj);
    new (&(v->tensor)) paddle::experimental::Tensor();
    v->tensor.set_impl(tensor->impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }
  return obj;
}

128 129
PyObject* pylayer_method_apply(PyObject* cls,
                               PyObject* args,
W
wanghuancoder 已提交
130 131 132 133 134 135 136 137 138 139 140 141
                               PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Begin run PyLayer apply...";
  PyObject* backward_function =
      PyObject_GetAttrString(cls, "_backward_function");
  if (!backward_function) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Get _backward_function faild."));
  }
  PyLayerObject* ctx = reinterpret_cast<PyLayerObject*>(
      PyObject_CallFunctionObjArgs(backward_function, nullptr));
  if (!ctx) {
142 143
    PADDLE_THROW(paddle::platform::errors::External(
        pybind11::detail::error_string().c_str()));
W
wanghuancoder 已提交
144 145 146 147 148 149 150
    return nullptr;
  }
  VLOG(6) << "PyLayer construct PyLayerContext finish...";

  bool require_any_grad = false;

  size_t inputs_size = 0;
151 152
  size_t args_size = 0;
  size_t kwargs_size = 0;
W
wanghuancoder 已提交
153 154 155
  PyObject* forward_args = nullptr;
  PyObject* kwargs_value_list = nullptr;
  if (kwargs) {
156
    kwargs_size = PyDict_Size(kwargs);
W
wanghuancoder 已提交
157 158
    kwargs_value_list = PyDict_Values(kwargs);
  }
159 160 161 162 163
  if (args) {
    args_size = PyTuple_GET_SIZE(args);
  }
  inputs_size = kwargs_size + args_size;
  forward_args = PyTuple_New(args_size + 1);
W
wanghuancoder 已提交
164 165 166 167 168 169 170 171 172
  Py_INCREF(ctx);
  PyTuple_SET_ITEM(forward_args, 0, reinterpret_cast<PyObject*>(ctx));

  std::vector<std::vector<egr::AutogradMeta*>> inputs_autograd_meta;
  inputs_autograd_meta.reserve(inputs_size);
  std::vector<std::vector<paddle::experimental::Tensor*>> inputs_tensor;
  inputs_tensor.reserve(inputs_size);
  ctx->forward_input_tensor_is_duplicable.clear();
  ctx->forward_input_tensor_is_duplicable.reserve(inputs_size);
173
  std::set<phi::TensorBase*> input_tensorbases;
W
wanghuancoder 已提交
174 175
  for (size_t i = 0; i < inputs_size; i++) {
    PyObject* obj = nullptr;
176 177
    if (i >= args_size) {
      obj = PyList_GetItem(kwargs_value_list, i - args_size);
W
wanghuancoder 已提交
178 179 180 181
    } else {
      obj = PyTuple_GET_ITEM(args, i);
    }
    if (IsEagerTensor(obj)) {
182 183
      input_tensorbases.insert(
          reinterpret_cast<TensorObject*>(obj)->tensor.impl().get());
W
wanghuancoder 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197
      auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(
          reinterpret_cast<TensorObject*>(obj)->tensor);
      inputs_autograd_meta.push_back({autograd_meta});
      inputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});  // NOLINT
      bool stop_gradient =
          autograd_meta == nullptr ? true : autograd_meta->StopGradient();
      if (!stop_gradient) {
        require_any_grad = true;
      }
      ctx->forward_input_tensor_is_duplicable.push_back(false);
    } else if (PyList_Check(obj)) {
      std::vector<paddle::experimental::Tensor*> tensors;
      Py_ssize_t len = PyList_Size(obj);
198 199 200 201 202 203
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
      std::vector<paddle::experimental::Tensor*> tensors;
      Py_ssize_t len = PyTuple_Size(obj);
221 222 223 224 225 226
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          input_tensorbases.insert(
              reinterpret_cast<TensorObject*>(o)->tensor.impl().get());
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
W
wanghuancoder 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        }
      }
      if (!tensors.empty()) {
        auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors);
        for (auto iter : autograd_meta) {
          bool stop_gradient = iter == nullptr ? true : iter->StopGradient();
          if (!stop_gradient) {
            require_any_grad = true;
          }
        }
        inputs_autograd_meta.push_back(autograd_meta);
        inputs_tensor.push_back(tensors);
        ctx->forward_input_tensor_is_duplicable.push_back(true);
      }
    }

243
    if (i < args_size) {
W
wanghuancoder 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
      Py_INCREF(obj);
      PyTuple_SET_ITEM(forward_args, i + 1, obj);
    }
  }

  VLOG(6)
      << "PyLayer forward args is ready, begin call user's forward function...";
  // call forward
  auto forward_fn = PyObject_GetAttrString(cls, "forward");
  if (!forward_fn) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Get forward function faild."));
  }
  bool trace_backward = egr::Controller::Instance().HasGrad();
  egr::Controller::Instance().SetHasGrad(false);
  auto outputs = PyObject_Call(forward_fn, forward_args, kwargs);
  egr::Controller::Instance().SetHasGrad(trace_backward);
  if (!outputs) {
262 263 264 265
    Py_XDECREF(forward_args);
    Py_XDECREF(kwargs_value_list);
    Py_XDECREF(backward_function);
    Py_XDECREF(forward_fn);
W
wanghuancoder 已提交
266 267 268 269 270 271
    return nullptr;
  }

  PyObject* outputs_tuple = nullptr;
  if (PyTuple_Check(outputs)) {
    outputs_tuple = outputs;
272 273
  } else if (PyList_Check(outputs)) {
    outputs_tuple = PyList_AsTuple(outputs);
W
wanghuancoder 已提交
274 275 276 277 278 279
  } else {
    outputs_tuple = PyTuple_New(1);
    Py_INCREF(outputs);
    PyTuple_SET_ITEM(outputs_tuple, 0, outputs);
  }

280 281 282 283 284 285 286
  std::set<paddle::experimental::Tensor*> inplace_tensors;
  std::set<phi::TensorBase*> not_inplace_tensorbases;
  auto not_inplace_tensors = GetTensorsFromPyObject(ctx->not_inplace_tensors);
  for (auto it : not_inplace_tensors) {
    not_inplace_tensorbases.insert(it->impl().get());
  }

W
wanghuancoder 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  auto outputs_size = PyTuple_GET_SIZE(outputs_tuple);
  std::vector<std::vector<paddle::experimental::Tensor*>> outputs_tensor;
  outputs_tensor.reserve(outputs_size);
  std::vector<std::vector<egr::AutogradMeta*>> outputs_autograd_meta;
  outputs_autograd_meta.reserve(outputs_size);
  ctx->forward_output_tensor_is_duplicable.clear();
  ctx->forward_output_tensor_is_duplicable.reserve(outputs_size);
  for (Py_ssize_t i = 0; i < outputs_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(outputs_tuple, i);
    if (IsEagerTensor(obj)) {
      outputs_tensor.push_back(
          {&(reinterpret_cast<TensorObject*>(obj)->tensor)});
      outputs_autograd_meta.push_back({egr::EagerUtils::autograd_meta(
          &(reinterpret_cast<TensorObject*>(obj)->tensor))});
      ctx->forward_output_tensor_is_duplicable.push_back(false);
302 303 304 305 306 307 308 309 310 311 312 313 314
      if (input_tensorbases.count(
              reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
        if (not_inplace_tensorbases.count(
                reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) {
          PyTuple_SET_ITEM(outputs_tuple,
                           i,
                           new_tensor_with_impl(&(
                               reinterpret_cast<TensorObject*>(obj)->tensor)));
        } else {
          inplace_tensors.insert(
              &(reinterpret_cast<TensorObject*>(obj)->tensor));
        }
      }
W
wanghuancoder 已提交
315 316 317
    } else if (PyList_Check(obj)) {
      std::vector<paddle::experimental::Tensor*> tensors;
      Py_ssize_t len = PyList_Size(obj);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
335 336 337 338 339 340 341 342 343 344 345
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    } else if (PyTuple_Check(obj)) {
      std::vector<paddle::experimental::Tensor*> tensors;
      Py_ssize_t len = PyTuple_Size(obj);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor));
          if (input_tensorbases.count(
                  reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
            if (not_inplace_tensorbases.count(
                    reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) {
              PyTuple_SetItem(obj,
                              j,
                              new_tensor_with_impl(&(
                                  reinterpret_cast<TensorObject*>(o)->tensor)));
            } else {
              inplace_tensors.insert(
                  &(reinterpret_cast<TensorObject*>(o)->tensor));
            }
          }
W
wanghuancoder 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        }
      }
      if (!tensors.empty()) {
        outputs_tensor.push_back(tensors);
        outputs_autograd_meta.push_back(
            egr::EagerUtils::autograd_meta(&tensors));
        ctx->forward_output_tensor_is_duplicable.push_back(true);
      }
    }
  }

  if (outputs_tensor.size() == 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "At least one output of `PyLayer.forward` is a `Tensor`."));
  }
  VLOG(6) << "PyLayer forward function finish...";

  if (require_any_grad && trace_backward) {
381
    auto non_differentiable = GetTensorsFromPyObject(ctx->non_differentiable);
W
wanghuancoder 已提交
382 383 384 385 386 387
    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      for (size_t j = 0; j < outputs_autograd_meta[i].size(); j++) {
        if (non_differentiable.find(outputs_tensor[i][j]) !=
            non_differentiable.end()) {
          outputs_autograd_meta[i][j]->SetStopGradient(true);
        } else {
388
          outputs_autograd_meta[i][j]->SetStopGradient(false);
W
wanghuancoder 已提交
389 390 391 392
        }
      }
    }

393 394 395 396 397 398
    for (auto it = inplace_tensors.begin(); it != inplace_tensors.end(); ++it) {
      auto inplace_tensor = *it;
      auto inplace_tensor_autograd_meta =
          egr::EagerUtils::autograd_meta(inplace_tensor);
      PADDLE_ENFORCE_EQ(!inplace_tensor_autograd_meta->StopGradient() &&
                            egr::egr_utils_api::IsLeafTensor(*inplace_tensor),
399 400 401 402
                        false,
                        paddle::platform::errors::InvalidArgument(
                            "Leaf Var (%s) that doesn't stop gradient "
                            "can't use inplace strategy.",
403 404 405
                            inplace_tensor->name()));
      inplace_tensor->bump_inplace_version();
      VLOG(3) << "Tensor(" << inplace_tensor->name()
406 407
              << ") uses Inplace Strategy.";
    }
W
wanghuancoder 已提交
408

409 410 411 412
    auto grad_node =
        std::make_shared<egr::GradNodePyLayer>(reinterpret_cast<PyObject*>(ctx),
                                               outputs_autograd_meta.size(),
                                               inputs_autograd_meta.size());
W
wanghuancoder 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    ctx->grad_node = grad_node;

    if (ctx->materialize_grads) {
      grad_node->SaveForwardOutputsMeta(outputs_tensor);
    }

    for (size_t i = 0; i < inputs_autograd_meta.size(); i++) {
      if (ctx->forward_input_tensor_is_duplicable[i]) {
        for (auto t : inputs_tensor[i]) {
          grad_node->SetGradOutMeta(*t, i);
        }
      } else {
        grad_node->SetGradOutMeta(*inputs_tensor[i][0], i);
      }
    }

    for (size_t i = 0; i < outputs_autograd_meta.size(); i++) {
      if (ctx->forward_output_tensor_is_duplicable[i]) {
        egr::EagerUtils::SetOutRankWithSlot(&outputs_autograd_meta[i], i);
        egr::EagerUtils::SetHistory(&outputs_autograd_meta[i], grad_node);
        for (auto t : outputs_tensor[i]) {
          grad_node->SetGradInMeta(*t, i);
        }
        egr::EagerUtils::CheckAndRetainGrad(outputs_tensor[i]);
      } else {
        egr::EagerUtils::SetOutRankWithSlot(outputs_autograd_meta[i][0], i);
        egr::EagerUtils::SetHistory(outputs_autograd_meta[i][0], grad_node);
        grad_node->SetGradInMeta(*outputs_tensor[i][0], i);
        egr::EagerUtils::CheckAndRetainGrad(*outputs_tensor[i][0]);
      }
    }
    VLOG(6) << "PyLayer construct backward node finish...";
  }

447 448 449 450
  if (outputs_size == 1) {
    Py_XDECREF(outputs);
    outputs = PyTuple_GetItem(outputs_tuple, 0);
    Py_INCREF(outputs);
451 452 453 454 455 456
    Py_XDECREF(outputs_tuple);
  }
  Py_XDECREF(forward_args);
  Py_XDECREF(kwargs_value_list);
  Py_XDECREF(backward_function);
  Py_XDECREF(forward_fn);
457
  Py_XDECREF(ctx);
458

W
wanghuancoder 已提交
459 460 461 462
  return outputs;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
PyObject* call_unpack_hook(PyLayerObject* self) {
  auto unpack_hook = self->unpack_hook;
  auto packed_value = self->container;

  auto packed_value_size = PyTuple_GET_SIZE(packed_value);
  auto unpacked_value = PyTuple_New(packed_value_size);

  for (Py_ssize_t i = 0; i < packed_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(packed_value, i);
    if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_list,
                         j,
                         reinterpret_cast<PyObject*>(((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr))));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        PyTuple_SET_ITEM(tmp_tuple,
                         j,
                         reinterpret_cast<PyObject*>((*unpack_hook)(
                             reinterpret_cast<void*>(o), nullptr)));
      }
      PyTuple_SET_ITEM(unpacked_value, i, tmp_tuple);
    } else {
      PyTuple_SET_ITEM(unpacked_value,
                       i,
                       reinterpret_cast<PyObject*>((*unpack_hook)(
                           reinterpret_cast<void*>(obj), nullptr)));
    }
  }

  return unpacked_value;
}

W
wanghuancoder 已提交
505 506 507
PyObject* tensor_properties_get_container(PyLayerObject* self, void* closure) {
  EAGER_TRY
  if (self->container == nullptr) {
508
    RETURN_PY_NONE;
W
wanghuancoder 已提交
509
  }
510 511 512 513 514 515
  if (self->container_be_packed) {
    return call_unpack_hook(self);
  } else {
    Py_INCREF(self->container);
    return self->container;
  }
W
wanghuancoder 已提交
516 517 518
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
void call_pack_hook(PyLayerObject* self, PyObject* value) {
  PyObject* saved_value = nullptr;
  if (PyTuple_Check(value)) {
    saved_value = value;
  } else if (PyList_Check(value)) {
    saved_value = PyList_AsTuple(value);
  } else {
    saved_value = PyTuple_New(1);
    Py_INCREF(value);
    PyTuple_SET_ITEM(saved_value, 0, value);
  }

  auto pack_hook = egr::SavedTensorsHooks::GetInstance().GetPackHook();
  self->unpack_hook = egr::SavedTensorsHooks::GetInstance().GetUnPackHook();

  auto saved_value_size = PyTuple_GET_SIZE(saved_value);
  PyObject* packed_value = PyTuple_New(saved_value_size);

  for (Py_ssize_t i = 0; i < saved_value_size; i++) {
    PyObject* obj = PyTuple_GET_ITEM(saved_value, i);
    if (IsEagerTensor(obj)) {
      PyTuple_SET_ITEM(packed_value,
                       i,
                       reinterpret_cast<PyObject*>(
                           (*pack_hook)(reinterpret_cast<void*>(obj))));
    } else if (PyList_Check(obj)) {
      Py_ssize_t len = PyList_Size(obj);
      auto tmp_list = PyList_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyList_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          PyTuple_SET_ITEM(tmp_list,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_list);
    } else if (PyTuple_Check(obj)) {
      Py_ssize_t len = PyTuple_Size(obj);
      auto tmp_tuple = PyTuple_New(len);
      for (Py_ssize_t j = 0; j < len; j++) {
        PyObject* o = PyTuple_GetItem(obj, j);
        if (IsEagerTensor(o)) {
          PyTuple_SET_ITEM(tmp_tuple,
                           j,
                           reinterpret_cast<PyObject*>(
                               (*pack_hook)(reinterpret_cast<void*>(o))));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "save_for_backward only support Tensor, list of Tensor, tuple of "
              "Tensor."));
        }
      }
      PyTuple_SET_ITEM(packed_value, i, tmp_tuple);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "save_for_backward only support Tensor, list of Tensor, tuple of "
          "Tensor."));
    }
  }

  if (PyTuple_Check(value)) {
    Py_XDECREF(saved_value);
  }

  Py_XDECREF(self->container);
  self->container = packed_value;
  self->container_be_packed = true;
}

594 595
int tensor_properties_set_container(PyLayerObject* self,
                                    PyObject* value,
W
wanghuancoder 已提交
596 597
                                    void* closure) {
  EAGER_TRY
598 599 600 601 602 603 604
  if (egr::SavedTensorsHooks::GetInstance().IsEnable()) {
    call_pack_hook(self, value);
  } else {
    Py_XINCREF(value);
    Py_XDECREF(self->container);
    self->container = value;
  }
W
wanghuancoder 已提交
605
  return 0;
0
0x45f 已提交
606
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
607 608 609 610 611 612
}

PyObject* tensor_properties_get_non_differentiable(PyLayerObject* self,
                                                   void* closure) {
  EAGER_TRY
  if (self->non_differentiable == nullptr) {
613
    RETURN_PY_NONE;
W
wanghuancoder 已提交
614 615 616 617 618 619 620
  }
  Py_INCREF(self->non_differentiable);
  return self->non_differentiable;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

int tensor_properties_set_non_differentiable(PyLayerObject* self,
621 622
                                             PyObject* value,
                                             void* closure) {
W
wanghuancoder 已提交
623 624 625 626 627
  EAGER_TRY
  Py_XINCREF(value);
  Py_XDECREF(self->non_differentiable);
  self->non_differentiable = value;
  return 0;
0
0x45f 已提交
628
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
629 630
}

631 632
PyObject* tensor_properties_get_not_inplace_tensors(PyLayerObject* self,
                                                    void* closure) {
W
wanghuancoder 已提交
633
  EAGER_TRY
634
  if (self->not_inplace_tensors == nullptr) {
635
    RETURN_PY_NONE;
W
wanghuancoder 已提交
636
  }
637 638
  Py_INCREF(self->not_inplace_tensors);
  return self->not_inplace_tensors;
W
wanghuancoder 已提交
639 640 641
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

642 643 644
int tensor_properties_set_not_inplace_tensors(PyLayerObject* self,
                                              PyObject* value,
                                              void* closure) {
W
wanghuancoder 已提交
645 646
  EAGER_TRY
  Py_XINCREF(value);
647 648
  Py_XDECREF(self->not_inplace_tensors);
  self->not_inplace_tensors = value;
W
wanghuancoder 已提交
649
  return 0;
0
0x45f 已提交
650
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
651 652 653
}

int tensor_properties_set_materialize_grads(PyLayerObject* self,
654 655
                                            PyObject* value,
                                            void* closure) {
W
wanghuancoder 已提交
656 657 658
  EAGER_TRY
  self->materialize_grads = CastPyArg2AttrBoolean(value, 0);
  return 0;
0
0x45f 已提交
659
  EAGER_CATCH_AND_THROW_RETURN_NEG
W
wanghuancoder 已提交
660 661 662
}

PyMethodDef pylayer_methods[] = {
663 664 665 666 667 668 669 670
    {"name",
     (PyCFunction)(void (*)(void))pylayer_method_name,
     METH_NOARGS,
     NULL},
    {"apply",
     (PyCFunction)(void (*)(void))pylayer_method_apply,
     METH_CLASS | METH_VARARGS | METH_KEYWORDS,
     NULL},
W
wanghuancoder 已提交
671 672
    {NULL, NULL, 0, NULL}};

673
struct PyGetSetDef pylayer_properties[] {
674 675 676 677 678 679 680 681 682 683
  {"container",
   (getter)tensor_properties_get_container,
   (setter)tensor_properties_set_container,
   nullptr,
   nullptr},
      {"non_differentiable",
       (getter)tensor_properties_get_non_differentiable,
       (setter)tensor_properties_set_non_differentiable,
       nullptr,
       nullptr},
684 685 686
      {"not_inplace_tensors",
       (getter)tensor_properties_get_not_inplace_tensors,
       (setter)tensor_properties_set_not_inplace_tensors,
687 688 689 690 691 692 693
       nullptr,
       nullptr},
      {"materialize_grads",
       nullptr,
       (setter)tensor_properties_set_materialize_grads,
       nullptr,
       nullptr},
694 695 696 697
  {
    nullptr, nullptr, nullptr, nullptr, nullptr
  }
};
W
wanghuancoder 已提交
698 699 700 701 702 703 704 705 706 707 708 709

void BindEagerPyLayer(PyObject* module) {
  auto heap_type = reinterpret_cast<PyHeapTypeObject*>(
      PyType_Type.tp_alloc(&PyType_Type, 0));
  heap_type->ht_name = ToPyObject("PyLayer");
  heap_type->ht_qualname = ToPyObject("PyLayer");
  auto type = &heap_type->ht_type;
  type->tp_name = "PyLayer";
  type->tp_basicsize = sizeof(PyLayerObject);
  type->tp_dealloc = (destructor)PyLayerDealloc;
  type->tp_methods = pylayer_methods;
  type->tp_getset = pylayer_properties;
710
  type->tp_new = (newfunc)PyLayerNew;
W
wanghuancoder 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
  Py_INCREF(&PyBaseObject_Type);
  type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type);
  type->tp_flags |=
      Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_VERSION_HEX >= 0x03050000
  type->tp_as_async = &heap_type->as_async;
#endif
  p_pylayer_type = type;

  if (PyType_Ready(type) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyType_Ready)."));
    return;
  }

  Py_INCREF(type);
  if (PyModule_AddObject(module, "PyLayer", reinterpret_cast<PyObject*>(type)) <
      0) {
    Py_DECREF(type);
    Py_DECREF(module);
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle error in BindEager(PyModule_AddObject)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle