test_stack_op.py 9.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
17
import paddle
18
import paddle.fluid as fluid
19 20
from op_test import OpTest, convert_float_to_uint16
import paddle.fluid.core as core
21
from paddle.fluid.framework import Program, program_guard
X
Xin Pan 已提交
22 23 24


class TestStackOpBase(OpTest):
25

X
Xin Pan 已提交
26 27 28 29
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
30
        self.dtype = 'float64'
X
Xin Pan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
45
        self.python_api = paddle.stack
X
Xin Pan 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(self.dtype))

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], self.x[i]))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
61
        self.check_output(check_eager=True)
X
Xin Pan 已提交
62 63

    def test_check_grad(self):
64
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
X
Xin Pan 已提交
65 66 67


class TestStackOp1(TestStackOpBase):
68

X
Xin Pan 已提交
69
    def initParameters(self):
70
        self.num_inputs = 8
X
Xin Pan 已提交
71 72 73


class TestStackOp2(TestStackOpBase):
74

X
Xin Pan 已提交
75
    def initParameters(self):
76
        self.num_inputs = 10
X
Xin Pan 已提交
77 78 79


class TestStackOp3(TestStackOpBase):
80

X
Xin Pan 已提交
81 82 83 84 85
    def initParameters(self):
        self.axis = -1


class TestStackOp4(TestStackOpBase):
86

X
Xin Pan 已提交
87 88 89 90 91
    def initParameters(self):
        self.axis = -4


class TestStackOp5(TestStackOpBase):
92

X
Xin Pan 已提交
93 94 95 96 97
    def initParameters(self):
        self.axis = 1


class TestStackOp6(TestStackOpBase):
98

X
Xin Pan 已提交
99 100 101 102
    def initParameters(self):
        self.axis = 3


103
class TestStackBF16Op(OpTest):
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def initDefaultParameters(self):
        self.num_inputs = 4
        self.input_dim = (5, 6, 7)
        self.axis = 0
        self.dtype = np.uint16

    def initParameters(self):
        pass

    def get_x_names(self):
        x_names = []
        for i in range(self.num_inputs):
            x_names.append('x{}'.format(i))
        return x_names

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        self.op_type = 'stack'
124
        self.python_api = paddle.stack
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        self.x = []
        for i in range(self.num_inputs):
            self.x.append(
                np.random.random(size=self.input_dim).astype(np.float32))

        out = np.stack(self.x, axis=self.axis)

        tmp = []
        x_names = self.get_x_names()
        for i in range(self.num_inputs):
            tmp.append((x_names[i], convert_float_to_uint16(self.x[i])))

        self.inputs = {'X': tmp}
        self.outputs = {'Y': convert_float_to_uint16(out)}
        self.attrs = {'axis': self.axis}

    def test_check_output(self):
142
        self.check_output(check_eager=True)
143 144

    def test_check_grad(self):
145
        self.check_grad(self.get_x_names(), 'Y', check_eager=True)
146 147


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class TestStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = fluid.layers.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
178 179
        np.testing.assert_array_equal(
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis))
180 181


182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test stack api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()
        self.set_program()

    def set_program(self):
        self.program = fluid.Program()
        with fluid.program_guard(self.program):
            input = fluid.layers.assign(self.x)
            tensor_array = fluid.layers.create_array(dtype='float32')
            zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64")

            for i in range(self.iter_num):
                fluid.layers.array_write(input, zero + i, tensor_array)

            self.out_var = paddle.stack(tensor_array, axis=self.axis)

    def test_case(self):
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
212 213
        np.testing.assert_array_equal(
            res[0], np.stack([self.x] * self.iter_num, axis=self.axis))
214 215 216


class API_test(unittest.TestCase):
217

218 219 220 221 222 223 224 225 226 227 228
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[1, 2], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1, 2], dtype='float64')
            data3 = fluid.layers.data('data3', shape=[1, 2], dtype='float64')
            result_stack = paddle.stack([data1, data2, data3], axis=0)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 2]).astype('float64')
            input2 = np.random.random([1, 2]).astype('float64')
            input3 = np.random.random([1, 2]).astype('float64')
229 230 231 232 233 234
            result, = exe.run(feed={
                "data1": input1,
                "data2": input2,
                "data3": input3
            },
                              fetch_list=[result_stack])
235
            expected_result = np.stack([input1, input2, input3], axis=0)
236
            np.testing.assert_allclose(expected_result, result, rtol=1e-05)
237

L
Leo Chen 已提交
238 239 240 241 242
    def test_single_tensor_error(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = paddle.rand([2, 3])
            self.assertRaises(TypeError, paddle.stack, x)

243 244

class API_DygraphTest(unittest.TestCase):
245

246 247 248 249 250 251 252 253
    def test_out(self):
        data1 = np.array([[1.0, 2.0]])
        data2 = np.array([[3.0, 4.0]])
        data3 = np.array([[5.0, 6.0]])
        with fluid.dygraph.guard():
            x1 = fluid.dygraph.to_variable(data1)
            x2 = fluid.dygraph.to_variable(data2)
            x3 = fluid.dygraph.to_variable(data3)
L
Leo Chen 已提交
254
            result = paddle.stack([x1, x2, x3])
255
            result_np = result.numpy()
L
Leo Chen 已提交
256
        expected_result = np.stack([data1, data2, data3])
257
        np.testing.assert_allclose(expected_result, result_np, rtol=1e-05)
258 259 260

        with fluid.dygraph.guard():
            y1 = fluid.dygraph.to_variable(data1)
L
Leo Chen 已提交
261
            result = paddle.stack([y1], axis=0)
262
            result_np_2 = result.numpy()
L
Leo Chen 已提交
263
        expected_result_2 = np.stack([data1], axis=0)
264
        np.testing.assert_allclose(expected_result_2, result_np_2, rtol=1e-05)
265

L
Leo Chen 已提交
266 267 268 269 270
    def test_single_tensor_error(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor([1, 2, 3])
            self.assertRaises(Exception, paddle.stack, x)

271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
class TestStackOpWithNegativeShape(unittest.TestCase):

    def test_out(self):
        main_prg, startup_prg = Program(), Program()
        with program_guard(main_prg, startup_prg):
            b = paddle.static.data(name='b', shape=[-1], dtype='int64')
            e = paddle.static.data(name='e', shape=[3], dtype='int64')
            k = paddle.stack([b, e], axis=0)
            exe = paddle.static.Executor()
            exe.run(startup_prg)
            out = exe.run(main_prg,
                          feed={
                              'b': np.ones([
                                  3,
                              ]).astype("int64"),
                              'e': np.zeros([
                                  3,
                              ]).astype("int64")
                          },
                          fetch_list=[k])
        np.testing.assert_allclose(out[0],
                                   np.array([[1, 1, 1], [0, 0, 0]]),
                                   rtol=1e-05)


X
Xin Pan 已提交
297 298
if __name__ == '__main__':
    unittest.main()