heter_context.h 8.3 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

T
Thunderbrook 已提交
17
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
18

T
Thunderbrook 已提交
19
#include <ThreadPool.h>
20

Y
yaoxuefeng 已提交
21
#include <algorithm>
T
Thunderbrook 已提交
22 23 24 25
#include <map>
#include <unordered_map>
#include <vector>

T
Thunderbrook 已提交
26
#ifdef PADDLE_WITH_PSLIB
27
#include "common/common_value.h"  // NOLINT
T
Thunderbrook 已提交
28 29 30
#endif

#ifdef PADDLE_WITH_PSCORE
31
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
T
Thunderbrook 已提交
32 33
#endif

34
#include "paddle/fluid/distributed/ps/thirdparty/round_robin.h"
T
Thunderbrook 已提交
35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h"

namespace paddle {
namespace framework {

class HeterContext {
 public:
T
Thunderbrook 已提交
43
  virtual ~HeterContext() {
44 45 46 47 48 49 50 51 52 53 54 55
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < mutex_.size(); ++i) {
        delete mutex_[i];
      }
      mutex_.clear();
    } else {
      for (size_t i = 0; i < dim_mutex_.size(); ++i) {
        for (size_t j = 0; j < dim_mutex_[i].size(); j++) {
          delete dim_mutex_[i][j];
        }
        dim_mutex_[i].clear();
      }
56 57
    }
  }
T
Thunderbrook 已提交
58 59
  Scope* scope_{nullptr};
  std::vector<std::vector<FeatureKey>> feature_keys_;
60
  std::vector<std::vector<std::vector<FeatureKey>>> feature_dim_keys_;
T
Thunderbrook 已提交
61
  std::vector<std::vector<std::vector<FeatureKey>>> device_task_keys_;
62

T
Thunderbrook 已提交
63
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
64
  std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
T
Thunderbrook 已提交
65 66
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_task_ptr_;
67 68 69 70
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      value_dim_ptr_;
  std::vector<std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>>>
      device_dim_ptr_;
T
Thunderbrook 已提交
71 72
#endif
#ifdef PADDLE_WITH_PSCORE
73 74
  std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> value_ptr_;
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
75
      value_dim_ptr_;
T
Thunderbrook 已提交
76 77
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
      device_task_ptr_;
78
  std::vector<std::vector<std::vector<paddle::distributed::FixedFeatureValue*>>>
79
      device_dim_ptr_;
T
Thunderbrook 已提交
80
#endif
81 82
  std::vector<std::vector<FeatureValue>> device_values_;
  std::vector<std::vector<FeatureKey>> device_keys_;
83
  std::vector<std::vector<std::vector<FeatureKey>>> device_dim_keys_;
84
  std::vector<std::mutex*> mutex_;
85 86
  std::vector<std::vector<std::mutex*>> dim_mutex_;
  int multi_mf_dim_ = 0;
87

L
lxsbupt 已提交
88
  void* sub_graph_feas = NULL;
Y
yaoxuefeng 已提交
89
  uint32_t shard_num_ = 37;
L
lxsbupt 已提交
90
  uint16_t pass_id_ = 0;
T
Thunderbrook 已提交
91 92 93 94 95 96 97
  uint64_t size() {
    uint64_t total_size = 0;
    for (auto& keys : feature_keys_) {
      total_size += keys.size();
    }
    return total_size;
  }
Y
yaoxuefeng 已提交
98 99
  void SetShardNum(uint32_t shard_num) { shard_num_ = shard_num; }
  uint32_t ShardNum() { return shard_num_; }
100

101 102 103 104 105 106
  void init(int shard_num, int device_num, int dim_num) {
    shard_num_ = shard_num;
    feature_keys_.resize(shard_num_);
    feature_dim_keys_.resize(shard_num_);
    value_ptr_.resize(shard_num_);
    value_dim_ptr_.resize(shard_num_);
T
Thunderbrook 已提交
107 108 109 110 111 112
    device_task_ptr_.resize(shard_num_);
    device_task_keys_.resize(shard_num_);
    for (size_t i = 0; i < device_task_ptr_.size(); i++) {
      device_task_ptr_[i].resize(device_num);
      device_task_keys_[i].resize(device_num);
    }
113 114 115
    for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
      feature_dim_keys_[i].resize(dim_num);
      value_dim_ptr_[i].resize(dim_num);
116
    }
117 118 119 120 121 122 123 124 125
    device_values_.resize(device_num);
    device_keys_.resize(device_num);

    device_dim_keys_.resize(device_num);
    device_dim_ptr_.resize(device_num);
    mutex_.resize(device_num);
    dim_mutex_.resize(device_num);
    for (size_t i = 0; i < mutex_.size(); ++i) {
      mutex_[i] = new std::mutex();
126
    }
127 128 129 130 131
    for (size_t i = 0; i < dim_mutex_.size(); ++i) {
      dim_mutex_[i].resize(dim_num);
      for (int j = 0; j < dim_num; j++) {
        dim_mutex_[i][j] = new std::mutex();
      }
132
    }
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    multi_mf_dim_ = dim_num;
  }

  void Reset() {
    if (!multi_mf_dim_) {
      for (size_t i = 0; i < feature_keys_.size(); ++i) {
        feature_keys_[i].clear();
      }
      for (size_t i = 0; i < value_ptr_.size(); ++i) {
        value_ptr_[i].clear();
      }
      for (size_t i = 0; i < device_values_.size(); ++i) {
        device_values_[i].clear();
      }
      for (size_t i = 0; i < device_keys_.size(); ++i) {
        device_keys_[i].clear();
      }
T
Thunderbrook 已提交
150 151 152 153 154 155
      for (size_t i = 0; i < device_task_ptr_.size(); ++i) {
        for (size_t j = 0; j < device_task_ptr_[i].size(); ++j) {
          device_task_ptr_[i][j].clear();
          device_task_keys_[i][j].clear();
        }
      }
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    } else {
      VLOG(3) << "Reset gpu task with dynamic mf dimention";
      for (size_t i = 0; i < feature_dim_keys_.size(); i++) {
        for (size_t j = 0; j < feature_dim_keys_[i].size(); j++) {
          feature_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < value_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < value_dim_ptr_[i].size(); j++) {
          value_dim_ptr_[i][j].clear();
        }
      }

      for (size_t i = 0; i < device_dim_keys_.size(); i++) {
        for (size_t j = 0; j < device_dim_keys_[i].size(); j++) {
          device_dim_keys_[i][j].clear();
        }
      }
      for (size_t i = 0; i < device_dim_ptr_.size(); i++) {
        for (size_t j = 0; j < device_dim_ptr_[i].size(); j++) {
          device_dim_ptr_[i][j].clear();
        }
      }
179 180
    }
  }
181 182
  void batch_add_keys(
      const std::vector<std::unordered_set<uint64_t>>& thread_keys) {
Y
yaoxuefeng 已提交
183 184 185 186 187 188
    assert(thread_keys.size() == feature_keys_.size());

    for (uint32_t i = 0; i < shard_num_; i++) {
      int idx = 0;
      idx = feature_keys_[i].size();
      feature_keys_[i].resize(feature_keys_[i].size() + thread_keys[i].size());
189 190
      std::copy(thread_keys[i].begin(),
                thread_keys[i].end(),
191
                feature_keys_[i].begin() + idx);
Y
yaoxuefeng 已提交
192 193
    }
  }
194

195
  void batch_add_keys(int shard_num,
196
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
197 198 199
    int idx = feature_keys_[shard_num].size();
    feature_keys_[shard_num].resize(feature_keys_[shard_num].size() +
                                    shard_keys.size());
200 201
    std::copy(shard_keys.begin(),
              shard_keys.end(),
202 203 204
              feature_keys_[shard_num].begin() + idx);
  }

205 206
  void batch_add_keys(int shard_num,
                      int dim_id,
207 208 209 210
                      const robin_hood::unordered_set<uint64_t>& shard_keys) {
    int idx = feature_dim_keys_[shard_num][dim_id].size();
    feature_dim_keys_[shard_num][dim_id].resize(
        feature_dim_keys_[shard_num][dim_id].size() + shard_keys.size());
211 212
    std::copy(shard_keys.begin(),
              shard_keys.end(),
213 214 215
              feature_dim_keys_[shard_num][dim_id].begin() + idx);
  }

Y
yaoxuefeng 已提交
216 217 218 219 220 221 222 223 224
  void UniqueKeys() {
    std::vector<std::thread> threads;
    auto unique_func = [this](int i) {
      auto& cur_keys = feature_keys_[i];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    auto unique_dynamic_mf_func = [this](int i, int j) {
      auto& cur_keys = feature_dim_keys_[i][j];
      std::sort(cur_keys.begin(), cur_keys.end());
      std::vector<FeatureKey>::iterator it;
      it = std::unique(cur_keys.begin(), cur_keys.end());
      cur_keys.resize(std::distance(cur_keys.begin(), it));
    };
    if (!multi_mf_dim_) {
      for (uint32_t i = 0; i < shard_num_; i++) {
        threads.push_back(std::thread(unique_func, i));
      }
    } else {
      for (uint32_t i = 0; i < shard_num_; i++) {
        for (int j = 0; j < multi_mf_dim_; j++) {
          threads.push_back(std::thread(unique_dynamic_mf_func, i, j));
        }
      }
      VLOG(3) << "heter_context unique keys with dynamic mf dimention";
Y
yaoxuefeng 已提交
243 244 245 246 247
    }
    for (std::thread& t : threads) {
      t.join();
    }
  }
T
Thunderbrook 已提交
248 249 250 251 252
};

}  // end namespace framework
}  // end namespace paddle
#endif