CrossChannelNormLayer.cpp 4.7 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
16
#include "NormLayer.h"
G
gaoyuan 已提交
17 18 19 20 21
#include "paddle/math/BaseMatrix.h"
#include "paddle/math/Matrix.h"

namespace paddle {

22
void CrossChannelNormLayer::forward(PassType passType) {
G
gaoyuan 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  Layer::forward(passType);
  MatrixPtr inV = getInputValue(0);

  size_t batchSize = inV->getHeight();
  size_t dataDim = inV->getWidth();
  CHECK_EQ(getSize(), dataDim);

  reserveOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();
  size_t spatialDim = dataDim / channels_;

  Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
  Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
  Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
  normBuffer_->zeroMem();
  dataBuffer_->zeroMem();
  // add eps to avoid overflow
  normBuffer_->addScalar(*normBuffer_, 1e-6);
  inV->square2(*dataBuffer_);
  for (size_t i = 0; i < batchSize; i++) {
    spatialBuffer_->zeroMem();
    MatrixPtr inTmp = Matrix::create(
        inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr dataTmp = Matrix::create(dataBuffer_->getData() + i * dataDim,
                                       channels_,
                                       spatialDim,
                                       false,
                                       useGpu_);
    MatrixPtr outTmp = Matrix::create(
        outV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr normTmp = Matrix::create(
        normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
    // compute norm.
    spatialBuffer_->sumCols(*dataTmp, 1, 1);
    spatialBuffer_->sqrt2(*spatialBuffer_);
    normTmp->copyFrom(*spatialBuffer_);
59 60
    outTmp->copyFrom(*inTmp);
    outTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
61
    // scale the layer.
62
    outTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
63 64 65
  }
}

66
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
G
gaoyuan 已提交
67 68 69 70 71 72 73 74 75 76 77
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr inV = getInputValue(0);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr outV = getOutputValue();

  size_t batchSize = inG->getHeight();
  size_t dataDim = inG->getWidth();
  size_t spatialDim = dataDim / channels_;

  dataBuffer_->dotMul(*outG, *outV);
  Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
78 79
  Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
  Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
G
gaoyuan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  scaleDiff_->zeroMem();
  for (size_t i = 0; i < batchSize; i++) {
    spatialBuffer_->zeroMem();
    channelBuffer_->zeroMem();
    // propagate to param.
    MatrixPtr dataBufferTmp =
        Matrix::create(dataBuffer_->getData() + i * dataDim,
                       channels_,
                       spatialDim,
                       false,
                       useGpu_);
    const MatrixPtr inValueTmp = Matrix::create(
        inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    const MatrixPtr outGradTmp = Matrix::create(
        outG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr inGradTmp = Matrix::create(
        inG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    const MatrixPtr normTmp = Matrix::create(
        normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
    channelBuffer_->sumRows(*dataBufferTmp, 1, 1);
    channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
    // store a / scale[i] in scaleDiff_ temporary
    scaleDiff_->add(*channelBuffer_, 1.);

    sampleBuffer_->dotMul(*inValueTmp, *outGradTmp);
    spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
    // scale the grad
107 108
    inGradTmp->copyFrom(*inValueTmp);
    inGradTmp->mulRowVector(*spatialBuffer_);
G
gaoyuan 已提交
109 110
    // divide by square of norm
    spatialBuffer_->dotMul(*normTmp, *normTmp);
111
    inGradTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
112 113 114
    // subtract
    inGradTmp->add(*outGradTmp, -1, 1);
    // divide by norm
115
    inGradTmp->divRowVector(*normTmp);
G
gaoyuan 已提交
116
    // scale the diff
117
    inGradTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
118 119 120 121 122 123 124
  }
  // updata scale
  if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
  scale_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle