test_layers.py 161.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29 30 31 32 33 34 35
from paddle.fluid.dygraph import base, nn, to_variable
from paddle.fluid.framework import (
    Program,
    _test_eager_guard,
    default_main_program,
    program_guard,
)
J
jerrywgz 已提交
36
from paddle.fluid.initializer import Constant
37
from paddle.fluid.param_attr import ParamAttr
38
from paddle.tensor import random
39 40 41 42 43 44 45 46 47 48 49


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

50 51 52 53 54 55 56 57
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
58 59 60 61

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
62
            paddle.seed(self.seed)
L
Leo Chen 已提交
63
            paddle.framework.random._manual_program_seed(self.seed)
64 65
            yield

66 67 68
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
69
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70
        exe.run(fluid.default_startup_program())
71 72 73 74 75 76
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
77 78

    @contextlib.contextmanager
79
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
80
        with fluid.dygraph.guard(
81 82
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
83
            paddle.seed(self.seed)
L
Leo Chen 已提交
84
            paddle.framework.random._manual_program_seed(self.seed)
85 86 87 88
            yield


class TestLayer(LayerTest):
89 90
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
91
            def __init__(self, input_size, linear1_size=4):
92
                super().__init__()
93
                self.linear1 = paddle.nn.Linear(
94 95
                    input_size, linear1_size, bias_attr=False
                )
96 97 98
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
99 100 101 102 103

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
104 105 106
                return ret

        with self.dynamic_graph():
107 108 109 110 111
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
112
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
113
                ret = custom(x, do_linear2=True)
114
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
115 116
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
117 118
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
119
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
120
            ret = custom(x, do_linear2=True)
121
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
122

123 124 125
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
126 127 128 129 130 131
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
132 133
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
134 135 136
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
137
            static_ret, static_ret2 = self.get_static_graph_result(
138 139
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
140
        with self.dynamic_graph():
141 142 143 144
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
145 146 147
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
148 149 150
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

151 152 153
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
154 155 156
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
157 158 159
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

160 161
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
162

163 164 165
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
166

S
songyouwei 已提交
167 168 169
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
170 171 172 173 174 175
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
176
            linear = paddle.nn.Linear(
177 178
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
179
            ret = linear(t)
180 181 182
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
183
        with self.dynamic_graph():
184 185
            with _test_eager_guard():
                t = base.to_variable(inp)
186
                linear = paddle.nn.Linear(
187 188
                    32,
                    4,
189 190
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
191 192 193
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
194
            t = base.to_variable(inp)
195
            linear = paddle.nn.Linear(
196 197
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
198 199 200
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

201 202
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
203

204 205 206 207 208
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
209
                linear = paddle.nn.Linear(
210 211
                    32,
                    4,
212 213
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
214 215 216 217 218 219 220 221
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
222
                linear = paddle.nn.Linear(
223 224
                    32,
                    4,
225 226
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
227 228 229 230 231 232 233
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
234 235 236 237 238 239
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
240 241
            flatten = nn.Flatten()
            ret = flatten(t)
242 243 244
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
245
        with self.dynamic_graph():
246 247 248 249 250 251
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

252 253 254 255 256
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

257 258
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
259 260 261 262 263 264

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
265
                linear = paddle.nn.Linear(
266 267
                    32,
                    4,
268 269
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
270 271 272 273 274 275 276 277
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
278
                linear = paddle.nn.Linear(
279 280
                    32,
                    4,
281 282
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
283 284 285 286
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

287 288 289
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
290 291 292 293 294 295
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
296 297 298
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
299 300 301 302 303
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
304
        with self.static_graph():
305 306 307 308 309 310
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
311
            lm = nn.LayerNorm(
312
                normalized_shape=[32, 32],
313
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
314 315
                act='sigmoid',
            )
316
            ret = lm(t)
317 318 319
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
320
        with self.dynamic_graph():
321 322 323 324
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
325 326
                    act='sigmoid',
                )
327 328 329
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

330
            lm = nn.LayerNorm(
331
                normalized_shape=[32, 32],
332
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
333 334
                act='sigmoid',
            )
335
            dy_ret = lm(base.to_variable(inp))
336
            dy_ret_value = dy_ret.numpy()
337

338
        with self.dynamic_graph():
339 340 341 342 343 344 345
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
346 347
                    act='sigmoid',
                )
348 349 350 351 352
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

353
            lm = nn.LayerNorm(
354
                normalized_shape=[32, 32],
355 356 357 358
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
359 360
                act='sigmoid',
            )
361 362 363 364
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
365

366 367 368
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
369

370
        with self.dynamic_graph():
371 372 373 374
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
375 376
                    act='sigmoid',
                )
377 378 379
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

380 381 382
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
383 384
                act='sigmoid',
            )
385 386 387
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
388 389 390 391
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
392
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
393 394
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
395
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
396 397
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
398 399

            with self.dynamic_graph():
400 401 402 403 404 405
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
406 407 408 409
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
410 411
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
412

413 414 415 416 417
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
418 419
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
420 421

        with self.dynamic_graph():
422 423 424 425 426
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

427 428
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
429
            dy_ret_value = dy_ret.numpy()
430

431 432
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
433

434 435 436 437 438
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
439 440 441 442 443 444 445
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
446 447

        with self.dynamic_graph():
448 449 450
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
451 452 453
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
454 455
                dy_eager_ret_value = dy_eager_ret.numpy()

456 457
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
458
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
459
            dy_ret_value = dy_ret.numpy()
460

461 462
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
463

M
minqiyang 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
477 478
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
479
            static_ret = self.get_static_graph_result(
480 481 482
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
483 484 485 486 487

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
488 489
                input=x, hidden=hidden, size=D * 3
            )
490
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
491 492 493
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
494 495 496
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
497 498

        with self.dynamic_graph():
499 500
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
501 502 503
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
504 505 506 507
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

508
            gru = nn.GRUUnit(size=D * 3)
509 510 511
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
512 513 514
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
515 516

        for i in range(len(static_ret)):
517 518 519 520 521 522 523 524 525
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
526

527
        with self.dynamic_graph():
528 529 530 531
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
532 533 534
                        custom_weight
                    )
                )
535 536
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
537 538 539 540 541 542
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
543
                self.assertFalse(
544 545
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
546 547 548 549
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
550 551 552 553 554 555
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
556
                for o1, o2 in zip(dy_ret1, dy_ret2):
557
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
558 559 560

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
561 562 563 564 565 566
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
567

568
            custom_weight = np.random.randn(D, D * 3).astype("float32")
569 570 571 572 573
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
574 575
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
576 577 578 579 580 581
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
582
            self.assertFalse(
583 584
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
585 586 587 588
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
589 590 591 592 593 594
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
595
            for o1, o2 in zip(dy_ret1, dy_ret2):
596
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
597 598 599

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
600 601 602
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
603
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
604

X
Xin Pan 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

621
            ret = paddle.add(t, t2)
622
            ret = paddle.pow(ret, t3)
623 624 625
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
626

627 628 629 630
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
631 632

        with self.dynamic_graph():
633
            with _test_eager_guard():
634
                ret = paddle.add(to_variable(n), to_variable(n2))
635
                ret = paddle.pow(ret, to_variable(n3))
636 637 638
                ret = paddle.divide(ret, to_variable(n4))
                ret = paddle.subtract(ret, to_variable(n5))
                dy_eager_ret = paddle.multiply(ret, to_variable(n6))
639 640
                dy_eager_ret_value = dy_eager_ret.numpy()

641
            ret = paddle.add(to_variable(n), to_variable(n2))
642
            ret = paddle.pow(ret, to_variable(n3))
643 644 645
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
646
            dy_ret_value = dy_ret.numpy()
647

648 649
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
650 651 652 653 654 655

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
656
            with _test_eager_guard():
657
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
658
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
659 660 661
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

662
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
663
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
664 665
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
666

667 668 669 670
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
671

672 673 674 675 676 677 678
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
679 680 681 682 683 684 685
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
686
            out = layers.sequence_conv(seq, 2, act='sigmoid')
687 688 689 690 691 692 693 694 695
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
696 697

        with self.static_graph():
698 699 700 701 702 703 704
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
705
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
706
            out = seq_conv(seq)
707 708 709 710 711 712 713 714 715 716 717 718
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
719 720 721 722 723

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
724
            out = paddle.static.nn.conv2d_transpose(
725 726
                input=img,
                num_filters=10,
727
                filter_size=27,
728
                act='sigmoid',
729 730 731 732 733
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
734 735 736
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
737
                num_channels=3,
738
                num_filters=10,
739
                filter_size=27,
740
                act='sigmoid',
741 742
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
743
            out = conv2d_transpose(img)
744 745 746
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
747
        with self.dynamic_graph():
748 749 750 751 752 753
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
754 755
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
756 757 758
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

759
            conv2d_transpose = nn.Conv2DTranspose(
760
                num_channels=3,
761
                num_filters=10,
762
                filter_size=27,
763
                act='sigmoid',
764 765
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
766
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
767
            dy_rlt_value = dy_rlt.numpy()
768 769 770
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
771

772
        with self.dynamic_graph():
773 774 775 776 777
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
778 779 780 781 782 783 784 785 786 787 788 789
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
790 791 792
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
793 794
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
795 796 797 798

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
799 800
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
801
                conv2d2.weight.set_value(conv2d1_weight_np)
802 803 804
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
805 806 807
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
808
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
809 810 811

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
812 813 814 815 816 817
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
818

819 820
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
821 822 823 824 825 826 827 828 829 830 831 832 833 834
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
835 836 837 838 839 840 841
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
842 843
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
844
            conv2d2.weight.set_value(conv2d1_weight_np)
845 846 847
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
848 849 850
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
851
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
852 853 854

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
855 856 857 858 859 860
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
861

862 863 864 865 866
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
867 868 869
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
870 871 872 873 874 875 876
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
877 878 879 880 881 882
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
883 884 885 886
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

887 888 889 890 891
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
892 893 894 895 896 897
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
898 899 900 901 902
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
903 904
                act='sigmoid',
            )
905

906 907 908
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
909

910
        with self.static_graph():
911 912 913 914 915 916
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
917
            btp = nn.BilinearTensorProduct(
918 919
                3,
                3,
920 921
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
922 923
                act='sigmoid',
            )
924
            out = btp(data_x, data_y)
925 926 927
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
928
        with self.dynamic_graph():
929 930 931 932 933 934
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
935 936 937 938 939
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
940 941
                dy_eager_rlt_value = dy_eager_rlt.numpy()

942
            btp = nn.BilinearTensorProduct(
943 944
                3,
                3,
945 946
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
947 948
                act='sigmoid',
            )
949
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
950
            dy_rlt_value = dy_rlt.numpy()
951

952
        with self.dynamic_graph():
953 954
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
955 956 957
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
958 959
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

960
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
961 962 963
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
964
            dy_rlt2_value = dy_rlt2.numpy()
965

966
        with self.static_graph():
967 968 969 970 971 972 973 974 975 976 977 978 979
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
980

981 982 983 984 985
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
986

987
        with self.dynamic_graph():
988 989 990 991
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
992 993 994
                        custom_weight
                    )
                )
995
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
996 997 998 999 1000 1001 1002 1003 1004
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1005
                self.assertFalse(
1006 1007
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1008 1009
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1010 1011 1012 1013 1014 1015
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1016
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1017 1018 1019

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1020 1021 1022 1023 1024 1025
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1026

1027
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1028 1029 1030 1031 1032
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1033
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1034 1035 1036 1037 1038 1039 1040 1041 1042
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1043 1044 1045
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1046 1047 1048 1049 1050 1051
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1052
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1053 1054 1055

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1056 1057 1058
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1059
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1060

1061
    def prelu_test(self, mode):
1062 1063
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1064 1065 1066 1067 1068 1069
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
1070
            out = paddle.static.nn.prelu(
1071 1072 1073 1074 1075
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1076 1077

        with self.static_graph():
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1090
            out = prelu(data_t)
1091 1092 1093
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1094 1095

        with self.dynamic_graph():
1096 1097 1098 1099 1100
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1101 1102
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1103 1104 1105
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1106 1107 1108 1109 1110 1111
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1112
            dy_rlt = prelu(base.to_variable(inp_np))
1113
            dy_rlt_value = dy_rlt.numpy()
1114

1115 1116 1117
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1118

1119
        with self.dynamic_graph():
1120 1121 1122 1123 1124 1125 1126
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1127 1128
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1129 1130 1131 1132
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1133 1134
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1135 1136 1137
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1138 1139
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1140
                self.assertFalse(
1141 1142
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1143 1144 1145
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1146
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1147 1148

                prelu2.weight = prelu1.weight
1149 1150 1151
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1152

1153 1154
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1167 1168 1169
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1170 1171
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1172 1173 1174 1175
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1176
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1177 1178

            prelu2.weight = prelu1.weight
1179 1180 1181
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1182

1183 1184 1185 1186 1187
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1188 1189 1190 1191 1192
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1193 1194 1195 1196 1197 1198 1199 1200 1201
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1202 1203
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1204 1205 1206
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1207
            emb_rlt = emb2(data_t)
1208 1209 1210
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1211
        with self.dynamic_graph():
1212
            with _test_eager_guard():
1213 1214 1215 1216 1217
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1218 1219 1220
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1221 1222 1223
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1224 1225
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1226 1227

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1228
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1229
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1230

1231
        with self.dynamic_graph():
1232 1233 1234 1235
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1236 1237 1238
                        custom_weight
                    )
                )
1239
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1240 1241 1242 1243 1244
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1245 1246 1247
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1248 1249 1250 1251 1252
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1253 1254 1255
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1256
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1257 1258

                emb2.weight = emb1.weight
1259 1260 1261
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1262

1263
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1264 1265 1266 1267 1268
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1269
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1270 1271 1272
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1273 1274 1275
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1276
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1277 1278 1279
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1280
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1281 1282

            emb2.weight = emb1.weight
1283 1284 1285
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1286

1287 1288 1289 1290
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1291
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1292 1293 1294 1295 1296 1297
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1298 1299 1300 1301 1302 1303 1304
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1305 1306 1307 1308 1309
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1310 1311 1312 1313 1314 1315
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1316 1317 1318
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1319
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1320
            nce_loss = paddle.static.nn.nce(
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1332 1333 1334
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1335 1336 1337
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1338

1339 1340 1341 1342
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1374

1375 1376
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1377 1378 1379 1380
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1381 1382 1383
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1384

L
Leo Chen 已提交
1385
        with self.dynamic_graph():
W
Weilong Wu 已提交
1386 1387 1388 1389
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1390 1391 1392 1393 1394 1395 1396 1397
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1421 1422 1423 1424 1425

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1426 1427 1428
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1429 1430 1431 1432 1433 1434
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1435 1436 1437 1438 1439 1440 1441 1442 1443

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1458

1459 1460
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1461
            dy_rlt_value = dy_rlt.numpy()
1462

1463 1464 1465
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1466

L
Leo Chen 已提交
1467
        with self.dynamic_graph():
W
Weilong Wu 已提交
1468
            with _test_eager_guard():
1469 1470 1471
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1472 1473
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1474 1475 1476
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1477 1478 1479 1480 1481 1482
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1483 1484 1485 1486 1487 1488 1489
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1523 1524 1525 1526 1527

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1528 1529
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1530 1531 1532 1533
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1534 1535 1536
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1537 1538 1539

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1540 1541 1542 1543 1544 1545
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1546

1547
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1548 1549 1550 1551 1552
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1553 1554 1555 1556
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1557 1558
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1559 1560 1561 1562 1563
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1597

1598 1599 1600
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1601
            self.assertFalse(
1602 1603
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1604 1605
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1606 1607
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1608
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1609 1610 1611

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1612 1613 1614
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1615
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1616

S
songyouwei 已提交
1617 1618
    def test_one_hot(self):
        with self.dynamic_graph():
1619
            with _test_eager_guard():
1620 1621 1622
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1623 1624
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1625 1626 1627 1628 1629
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1630

S
songyouwei 已提交
1631 1632 1633
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1634 1635 1636 1637 1638
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1639 1640 1641

    def test_split(self):
        with self.dynamic_graph():
1642 1643 1644
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1645 1646 1647 1648 1649
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1650 1651
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1652

S
songyouwei 已提交
1653 1654
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1655 1656 1657 1658 1659
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1660 1661
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1662 1663 1664

    def test_topk(self):
        with self.dynamic_graph():
1665 1666 1667 1668
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1669 1670 1671 1672 1673 1674 1675 1676
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1677

S
songyouwei 已提交
1678 1679 1680
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1681 1682 1683 1684 1685 1686 1687 1688
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1689

L
lujun 已提交
1690 1691
    def test_conv3d(self):
        with self.static_graph():
1692 1693 1694
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1695 1696 1697
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1698
            static_ret = self.get_static_graph_result(
1699
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1700 1701
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1702 1703

        with self.static_graph():
1704 1705 1706
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1707 1708 1709
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1710 1711
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1712
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1713 1714
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1715 1716

        with self.dynamic_graph():
1717 1718
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1719 1720 1721
                conv3d = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
                )
1722 1723 1724
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1725
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1726 1727 1728
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
1729
            dy_ret = conv3d(base.to_variable(images))
1730
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1731

1732 1733 1734
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1735

1736
        with self.dynamic_graph():
1737 1738 1739 1740 1741
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1742 1743 1744
                        custom_weight
                    )
                )
1745 1746
                conv3d1 = paddle.nn.Conv3D(
                    in_channels=3, out_channels=3, kernel_size=2
1747
                )
1748 1749 1750 1751 1752
                conv3d2 = paddle.nn.Conv3D(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
1753
                )
1754 1755 1756
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1757 1758
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1759 1760 1761 1762

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1763 1764
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1765
                conv3d2.weight.set_value(conv3d1_weight_np)
1766 1767 1768
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1769 1770 1771
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1772
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1773 1774 1775

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1776 1777 1778 1779 1780 1781
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1782

1783 1784
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1785 1786 1787 1788 1789
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1790 1791 1792 1793 1794 1795 1796 1797
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1798
            )
1799 1800 1801 1802 1803 1804 1805
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1806 1807
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1808
            conv3d2.weight.set_value(conv3d1_weight_np)
1809 1810 1811
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1812 1813 1814
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1815
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1816 1817 1818

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1819 1820 1821 1822 1823 1824
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1825

L
lujun 已提交
1826 1827 1828 1829 1830 1831 1832 1833
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1834 1835 1836 1837 1838 1839 1840
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1841
            ret = layers.row_conv(input=x, future_context_size=2)
1842 1843 1844 1845 1846 1847 1848 1849 1850
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1851 1852

        with self.static_graph():
1853 1854 1855 1856 1857 1858 1859
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1860 1861
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1862 1863 1864 1865 1866 1867 1868 1869 1870
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1871

1872
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1873

1874
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1875

1876
    def func_group_norm(self):
L
lujun 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1887 1888 1889 1890 1891 1892 1893
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1894
            ret = paddle.static.nn.group_norm(
1895 1896
                input=X,
                groups=2,
1897
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1909 1910

        with self.static_graph():
1911 1912 1913 1914 1915 1916 1917
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1918 1919 1920
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1921
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1922 1923
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1924
            ret = groupNorm(X)
1925 1926 1927 1928 1929 1930 1931 1932 1933
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1934 1935

        with self.dynamic_graph():
1936 1937 1938
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1939
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1940 1941
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1942
            dy_ret = groupNorm(base.to_variable(input))
1943
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1944

1945 1946
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1947

1948 1949 1950 1951 1952
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1964 1965 1966
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1967
            ret = paddle.static.nn.instance_norm(input=X)
1968 1969 1970
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1971 1972

        with self.static_graph():
1973 1974 1975
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1976
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1977
            ret = instanceNorm(X)
1978 1979 1980
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1981 1982

        with self.dynamic_graph():
1983
            with _test_eager_guard():
1984
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1985 1986 1987
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1988
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1989 1990 1991 1992
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1993
            with _test_eager_guard():
1994
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1995 1996 1997
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1998
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
1999 2000 2001
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

2002 2003 2004 2005 2006
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
2007 2008 2009 2010

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
2011
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2012 2013 2014 2015 2016 2017 2018
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2019
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
2020 2021 2022 2023
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2035 2036 2037 2038 2039 2040 2041
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2042
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2043 2044 2045 2046 2047 2048 2049 2050 2051
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2052 2053

        with self.static_graph():
2054 2055 2056 2057 2058 2059 2060
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2061
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2062
            ret = spectralNorm(Weight)
2063 2064 2065 2066 2067 2068 2069 2070 2071
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2072 2073

        with self.dynamic_graph():
2074 2075 2076 2077 2078
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2079
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2080
            dy_ret = spectralNorm(base.to_variable(input))
2081
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2082

2083 2084 2085
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2130 2131

        with self.static_graph():
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2149
            ret = treeConv(NodesVector, EdgeSet)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2162 2163

        with self.dynamic_graph():
2164
            with _test_eager_guard():
2165 2166 2167 2168 2169 2170
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2171 2172
                dy_eager_rlt_value = dy_eager_ret.numpy()

2173 2174 2175
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2176
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2177
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2178

2179 2180 2181
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2182

2183
        with self.dynamic_graph():
2184 2185 2186 2187
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2212
                self.assertFalse(
2213 2214
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2215 2216
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2217 2218 2219 2220 2221 2222
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2223
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2224 2225 2226

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2227 2228 2229 2230 2231 2232
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2233

2234
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2261 2262 2263
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2264 2265 2266 2267 2268 2269
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2270
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2271 2272 2273

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2274 2275 2276 2277 2278 2279
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2280

L
lujun 已提交
2281
    def test_conv3d_transpose(self):
2282 2283 2284
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2285 2286 2287

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2288
            out = paddle.static.nn.conv3d_transpose(
2289
                input=img, num_filters=12, filter_size=12, use_cudnn=True
2290
            )
L
lujun 已提交
2291
            static_rlt = self.get_static_graph_result(
2292 2293
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2294 2295
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2296 2297
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
2298
            )
L
lujun 已提交
2299 2300
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2301 2302
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2303
        with self.dynamic_graph():
2304
            with _test_eager_guard():
2305 2306 2307 2308
                conv3d_transpose = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=12,
                    kernel_size=12,
2309
                )
2310 2311 2312
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2313 2314
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
2315
            )
L
lujun 已提交
2316
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2317
            dy_rlt_value = dy_rlt.numpy()
2318 2319 2320
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2321

2322
        with self.dynamic_graph():
2323 2324 2325 2326 2327
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2328 2329 2330
                        custom_weight
                    )
                )
2331 2332 2333 2334
                conv3d1 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
2335 2336
                    bias_attr='eager_conv3d1_b',
                )
2337 2338 2339 2340 2341
                conv3d2 = paddle.nn.Conv3DTranspose(
                    in_channels=3,
                    out_channels=3,
                    kernel_size=2,
                    weight_attr=weight_attr,
2342 2343
                    bias_attr='eager_conv3d2_b',
                )
2344 2345 2346
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2347 2348
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2349 2350 2351 2352

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2353 2354
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2355
                conv3d2.weight.set_value(conv3d1_weight_np)
2356 2357 2358
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2359 2360 2361
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2362
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2363 2364 2365

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2366 2367 2368 2369 2370 2371
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2372

2373 2374
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2375 2376 2377 2378 2379
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
2380 2381 2382 2383
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
2384 2385
                bias_attr='conv3d1_b',
            )
2386 2387 2388 2389 2390
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
2391 2392
                bias_attr='conv3d2_b',
            )
2393 2394 2395 2396 2397 2398 2399
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2400 2401
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2402
            conv3d2.weight.set_value(conv3d1_weight_np)
2403 2404 2405
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2406 2407 2408
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2409
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2410 2411 2412

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2413 2414 2415 2416 2417 2418
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2419

2420
    def func_while_loop(self):
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2438
            def cond1(i):
2439 2440
                return layers.less_than(i, ten)

2441
            def body1(i):
2442 2443
                return i + 1

2444
            dy_ret = layers.while_loop(cond1, body1, [i])
2445 2446 2447 2448 2449 2450
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2451
                layers.while_loop(cond1, body2, [j])
2452

2453
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2454

2455 2456 2457 2458 2459
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2460 2461 2462 2463 2464 2465 2466 2467
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2468 2469 2470
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2471
        with self.dynamic_graph():
2472 2473 2474 2475 2476 2477 2478 2479
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2480 2481 2482 2483
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2484 2485
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2486 2487 2488 2489 2490

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
2491
            cond1 = paddle.less_equal(x=a1, y=b1)
2492 2493 2494
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2495
        with self.dynamic_graph():
2496 2497 2498
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
2499
                dcond1 = paddle.less_equal(x=da1, y=db1)
2500 2501 2502 2503

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2504 2505
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
2506
            dcond1 = paddle.less_equal(x=da1, y=db1)
2507 2508 2509 2510

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2511
        # greater than
2512 2513 2514
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
2515
            cond2 = paddle.greater_than(x=a2, y=b2)
2516 2517 2518
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2519
        with self.dynamic_graph():
2520 2521 2522
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
2523
                dcond2 = paddle.greater_than(x=da2, y=db2)
2524 2525 2526 2527

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2528 2529
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
2530
            dcond2 = paddle.greater_than(x=da2, y=db2)
2531 2532 2533 2534

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2535
        # greater equal
2536 2537 2538
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
2539
            cond3 = paddle.greater_equal(x=a3, y=b3)
2540 2541 2542
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2543
        with self.dynamic_graph():
2544 2545 2546
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
2547
                dcond3 = paddle.greater_equal(x=da3, y=db3)
2548 2549 2550 2551

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2552 2553
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
2554
            dcond3 = paddle.greater_equal(x=da3, y=db3)
2555 2556 2557 2558 2559 2560 2561 2562

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
2563
            cond4 = paddle.equal(x=a4, y=b4)
2564 2565 2566
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2567
        with self.dynamic_graph():
2568 2569 2570
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
2571
                dcond4 = paddle.equal(x=da4, y=db4)
2572 2573 2574 2575

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2576 2577
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
2578
            dcond4 = paddle.equal(x=da4, y=db4)
2579 2580 2581 2582 2583 2584 2585 2586

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
2587
            cond5 = paddle.equal(x=a5, y=b5)
2588 2589 2590
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2591
        with self.dynamic_graph():
2592 2593 2594
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
2595
                dcond5 = paddle.equal(x=da5, y=db5)
2596 2597 2598 2599

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2600 2601
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
2602
            dcond5 = paddle.equal(x=da5, y=db5)
2603 2604 2605 2606

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2607 2608
    def test_cond(self):
        def less_than_branch(a, b):
2609
            return paddle.add(a, b)
2610 2611

        def greater_equal_branch(a, b):
2612
            return paddle.subtract(a, b)
2613 2614

        with self.static_graph():
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2631 2632 2633 2634 2635
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2636 2637 2638
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2651 2652
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2653 2654 2655
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2656 2657 2658 2659 2660
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2661 2662
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2673 2674
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2675
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2676 2677 2678 2679 2680
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2681 2682
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2701
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2702

2703 2704 2705
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2706 2707
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2708 2709 2710 2711 2712
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2713 2714 2715 2716
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2717 2718 2719 2720 2721 2722 2723
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2724
                pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2725

2726 2727 2728 2729 2730 2731
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2732 2733 2734
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2735 2736 2737 2738 2739 2740
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
2741
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
2742

2743 2744 2745
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2746 2747 2748 2749
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2750 2751 2752 2753
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2789 2790
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2791 2792
                fetch_list=[out_1, out_2, out_3]
            )
2793 2794

        with self.dynamic_graph():
2795
            with _test_eager_guard():
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2817 2818 2819 2820 2821

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2822 2823 2824
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2839 2840 2841 2842 2843

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2844 2845 2846 2847 2848 2849
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2850

2851 2852 2853 2854
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2855 2856 2857 2858 2859 2860
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2861
            crop_shape1 = (1, 2, 4, 4)
2862 2863 2864
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2865 2866
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2867 2868 2869
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2870 2871
            crop_offsets3 = [0, dim1, dim2, 0]

2872 2873 2874
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2875 2876 2877 2878 2879

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2880 2881 2882
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2883 2884 2885
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2886 2887 2888

        self.assertIsNotNone(shard_label)

2889 2890 2891 2892 2893 2894 2895 2896
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
2897
            result = paddle.static.accuracy(input=predict, label=label, k=5)
2898 2899 2900 2901
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2902 2903
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2904 2905 2906
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2907

L
Leo Chen 已提交
2908
        with self.dynamic_graph(force_to_use_cpu=True):
2909 2910 2911 2912
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
2913 2914 2915
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
2916

2917
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2918

Y
Yu Yang 已提交
2919

2920
class TestBook(LayerTest):
H
hong 已提交
2921 2922
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2923 2924 2925 2926 2927 2928 2929 2930
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2931
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2932

2933
    def func_all_layers(self):
2934 2935 2936 2937 2938
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2939 2940 2941
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2954 2955
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2956

2957 2958
                else:
                    continue
H
hong 已提交
2959 2960
            if method.__name__ in self.only_static_set:
                continue
2961 2962 2963 2964 2965

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2966
                dy_result_value = dy_result.numpy()
2967

2968
            if method.__name__ in self.all_close_compare:
2969 2970 2971 2972 2973 2974
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2975 2976 2977
                        method.__name__
                    ),
                )
2978 2979
                continue

H
hong 已提交
2980
            if method.__name__ not in self.not_compare_static_dygraph_set:
2981 2982 2983 2984
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2985 2986 2987
                        method.__name__
                    ),
                )
2988

2989 2990 2991 2992 2993
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2994 2995 2996
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2997
            shape = [self._batch_size] + shape
2998 2999 3000 3001 3002
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3003 3004 3005
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3006
        elif dtype == 'int64':
3007 3008 3009 3010 3011 3012 3013
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3014
        if base.enabled():
3015 3016 3017 3018 3019
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3020 3021
        else:
            if set_feed_dict:
3022
                self._feed_dict[name] = self._get_np_data(
3023 3024 3025 3026 3027 3028 3029 3030
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3031 3032

    def make_fit_a_line(self):
3033 3034 3035 3036
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3037
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3038
            y_predict = layers.fc(input=x, size=1, act=None)
3039
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3040
            cost = layers.square_error_cost(input=y_predict, label=y)
3041
            avg_cost = paddle.mean(cost)
3042
            return avg_cost
Y
Yu Yang 已提交
3043

3044
    def make_recognize_digits_mlp(self):
3045 3046 3047
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3048
            # Change g_program, so the rest layers use `g_program`
3049 3050
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3051 3052
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3053 3054 3055 3056 3057 3058
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3059
            cost = layers.cross_entropy(input=predict, label=label)
3060
            avg_cost = paddle.mean(cost)
3061
            return avg_cost
Y
Yu Yang 已提交
3062

3063
    def make_conv2d_transpose(self):
3064 3065 3066
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3067
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3068
            return paddle.static.nn.conv2d_transpose(
3069 3070
                input=img, num_filters=10, output_size=28
            )
3071

3072
    def make_recognize_digits_conv(self):
3073 3074 3075 3076 3077 3078
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3079
            label = self._get_data(name='label', shape=[1], dtype='int64')
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3096 3097 3098

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3099
            avg_cost = paddle.mean(cost)
3100
            return avg_cost
Y
Yu Yang 已提交
3101

3102
    def make_word_embedding(self):
3103 3104 3105
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3106 3107
            dict_size = 10000
            embed_size = 32
3108
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3109 3110 3111
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3112 3113 3114
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3141 3142 3143

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3144 3145
                axis=1,
            )
Y
Yu Yang 已提交
3146 3147

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3148 3149 3150
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3151
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3152
            avg_cost = paddle.mean(cost)
3153
            return avg_cost
Y
Yu Yang 已提交
3154

3155
    def make_pool2d(self):
3156 3157 3158
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3159
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3160 3161 3162
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3163

K
Kaipeng Deng 已提交
3164
    def make_pool2d_infershape(self):
3165 3166 3167
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3168
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3169 3170 3171
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3172 3173 3174
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3175

3176
    def make_lstm_unit(self):
3177 3178 3179 3180 3181 3182
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3183
            x_t = layers.fc(input=x_t_data, size=10)
3184 3185 3186
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3187
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3188 3189 3190
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3191
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3192 3193 3194
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3195

3196
    def make_softmax(self):
3197 3198 3199
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3200
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3201
            hid = layers.fc(input=data, size=20)
3202
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3203

3204
    @prog_scope()
3205
    def make_nce(self):
Y
Yang Yu 已提交
3206 3207
        window_size = 5
        words = []
3208
        for i in range(window_size):
Y
Yang Yu 已提交
3209
            words.append(
3210 3211 3212 3213
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3214 3215

        dict_size = 10000
M
minqiyang 已提交
3216
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3217 3218

        embs = []
3219
        for i in range(window_size):
Y
Yang Yu 已提交
3220 3221 3222
            if i == label_word:
                continue

3223 3224 3225 3226 3227 3228
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3229 3230 3231 3232

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3233
        loss = paddle.static.nn.nce(
3234 3235 3236 3237 3238 3239
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3240
        avg_loss = paddle.mean(loss)
3241
        return avg_loss
Y
Yang Yu 已提交
3242

3243
    def make_multiplex(self):
3244 3245 3246
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3247 3248 3249
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3250
            out = layers.multiplex(inputs=[x1, x2], index=index)
3251
            return out
3252 3253

    def make_softmax_with_cross_entropy(self):
3254 3255 3256
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3257 3258
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3259
            loss, softmax = layers.softmax_with_cross_entropy(
3260 3261
                x, y, return_softmax=True
            )
3262 3263 3264
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3265
            loss = layers.softmax_with_cross_entropy(x, y)
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3280
            return loss4
3281 3282

    def make_smooth_l1(self):
3283 3284 3285
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3286 3287
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3288
            loss = layers.smooth_l1(x, y)
3289
            return loss
3290

3291
    def make_scatter(self):
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3307
            out = paddle.scatter(x, index=idx, updates=updates)
3308
            return out
Y
yangyaming 已提交
3309

3310 3311 3312 3313
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3314
            return one_hot_label
3315

3316 3317 3318 3319 3320
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3321
            one_hot_label = layers.one_hot(input=label, depth=10)
3322
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3323
            return smooth_label
3324

3325
    def make_topk(self):
3326 3327 3328
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3329 3330
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3331 3332
            return values
            return indices
J
jerrywgz 已提交
3333

3334
    def make_resize_bilinear(self):
3335 3336 3337
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3338
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3339
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3340
            return output
K
Kaipeng Deng 已提交
3341 3342

    def make_resize_bilinear_by_scale(self):
3343 3344 3345
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3346 3347
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3348
            return output
3349

3350
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3351
        try:
3352 3353 3354
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3355 3356 3357 3358 3359 3360
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3361 3362 3363 3364 3365 3366
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3367 3368 3369 3370
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3371 3372 3373
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3374
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3375
            output = layers.resize_nearest(x, out_shape=[12, 12])
3376
            return output
K
Kaipeng Deng 已提交
3377 3378

    def make_resize_nearest_by_scale(self):
3379 3380 3381
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3382 3383
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3384
            return output
K
Kaipeng Deng 已提交
3385 3386 3387

    def make_resize_trilinear(self):
        try:
3388 3389 3390
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3391 3392 3393 3394 3395 3396
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3397 3398 3399 3400 3401 3402
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3403 3404 3405 3406
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3407 3408 3409
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3410 3411
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3412
            return output
K
Kaipeng Deng 已提交
3413 3414

    def make_resize_trilinear_by_scale(self):
3415 3416 3417
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3418 3419
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3420
            return output
3421

3422
    def make_polygon_box_transform(self):
3423 3424 3425
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3426
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3427
            output = layers.polygon_box_transform(input=x)
3428
            return output
3429

3430
    def make_l2_normalize(self):
3431 3432 3433
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3434
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3435
            output = layers.l2_normalize(x, axis=1)
3436
            return output
3437

3438
    def make_argsort(self):
3439 3440 3441
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3442
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3443
            out, ids = layers.argsort(input=data, axis=1)
3444 3445
            return out
            return ids
3446 3447

    def make_shape(self):
3448 3449 3450 3451 3452 3453
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3454
            out = layers.shape(input)
3455
            return out
B
Bai Yifan 已提交
3456

3457
    def make_pad2d(self):
3458 3459 3460 3461 3462 3463
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3464 3465 3466

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3467 3468 3469 3470
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3471
            out = tmp_pad(input)
3472
            return out
W
whs 已提交
3473

K
Kaipeng Deng 已提交
3474
    def make_mish(self):
3475 3476 3477
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3478 3479
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3480
            return out
K
Kaipeng Deng 已提交
3481

3482
    def make_cross_entropy(self):
3483 3484 3485
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3486 3487
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3488 3489
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3490
            return out
3491

3492
    def make_uniform_random_batch_size_like(self):
3493 3494 3495 3496 3497 3498
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
3499
            out = random.uniform_random_batch_size_like(input, [-1, 11])
3500
            return out
G
fix  
gongweibao 已提交
3501

3502
    def make_gaussian_random(self):
3503 3504 3505
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3506
            out = layers.gaussian_random(shape=[20, 30])
3507
            return out
G
fix  
gongweibao 已提交
3508

3509
    def make_sampling_id(self):
3510 3511 3512 3513 3514 3515 3516 3517 3518
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3519 3520

            out = layers.sampling_id(x)
3521
            return out
G
fix  
gongweibao 已提交
3522

3523
    def make_sum(self):
3524 3525 3526 3527 3528 3529
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3530

3531
            out = paddle.add_n(input)
3532
            return out
G
fix  
gongweibao 已提交
3533

3534
    def make_slice(self):
G
fix  
gongweibao 已提交
3535 3536 3537 3538
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3539 3540 3541 3542 3543 3544
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3545

2
201716010711 已提交
3546
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
3547
            return out
G
merge  
gongweibao 已提交
3548

3549
    def make_scale_variable(self):
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
3562
            out = paddle.scale(input, scale=scale_var)
3563 3564
            return out

M
minqiyang 已提交
3565
    def make_iou_similarity(self):
3566 3567 3568
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3569 3570
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3571
            out = layers.iou_similarity(x, y, name='iou_similarity')
3572
            return out
3573 3574

    def make_grid_sampler(self):
3575 3576 3577
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3578 3579
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3580
            out = layers.grid_sampler(x, grid)
3581
            return out
3582 3583

    def make_bilinear_tensor_product_layer(self):
3584 3585 3586
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3587 3588 3589 3590
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3591
            return out
3592 3593

    def make_batch_norm(self):
3594 3595 3596 3597 3598 3599
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3600
            out = layers.batch_norm(data)
3601
            return out
3602

3603
    def make_batch_norm_momentum_variable(self):
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3616
            out = layers.batch_norm(data, momentum=momentum)
3617
            return out
3618

3619
    def make_range(self):
3620 3621 3622
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3623 3624 3625
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3626 3627 3628
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3629
            y = paddle.arange(start, end, step, 'float64')
3630 3631 3632
            return y

    def make_spectral_norm(self):
3633 3634 3635 3636 3637 3638 3639 3640 3641
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3642
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3643
            return out
3644 3645

    def make_kldiv_loss(self):
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3661 3662 3663
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
3664
            return loss
3665 3666

    def make_temporal_shift(self):
3667 3668 3669
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3670 3671
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3672
            return out
3673

M
minqiyang 已提交
3674
    def make_pixel_shuffle(self):
3675 3676 3677
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3678
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
3679
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
3680
            return out
M
minqiyang 已提交
3681

R
ruri 已提交
3682
    def make_mse_loss(self):
3683 3684 3685
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3686 3687
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
3688
            out = paddle.nn.functional.mse_loss(input=x, label=y)
3689
            return out
R
ruri 已提交
3690

3691
    def make_square_error_cost(self):
3692 3693 3694
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3695 3696 3697
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3698
            return out
3699

3700 3701 3702 3703
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3704 3705 3706
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3707 3708
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3709 3710 3711 3712
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3713 3714 3715 3716 3717 3718

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3719 3720 3721 3722 3723 3724 3725 3726
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3727 3728 3729 3730

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3731
            # case 1
3732
            x = layers.data(name='x', shape=[10], dtype='float32')
3733 3734 3735
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3736 3737 3738
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3739
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3740 3741 3742 3743 3744 3745
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3746

W
whs 已提交
3747
    def test_affine_grid(self):
3748
        with self.static_graph():
W
whs 已提交
3749 3750 3751 3752
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3753
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3754 3755
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3756 3757 3758

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3759

W
wangchaochaohu 已提交
3760 3761 3762 3763 3764 3765 3766
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
3767
            out = paddle.strided_slice(
3768 3769
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3770 3771
            return out

3772 3773
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3774 3775 3776 3777 3778 3779
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3780 3781
            return out

3782 3783 3784 3785
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3786 3787 3788 3789
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3790

3791 3792 3793 3794 3795
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3796
            return out
3797

3798 3799 3800 3801
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3802
            length = layers.data(name='length', shape=[], dtype='int64')
3803
            return layers.sequence_unpad(x=x, length=length)
3804

3805 3806 3807
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3808 3809 3810
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3811
            seq = layers.fc(input=seq_data, size=20)
3812
            return layers.sequence_softmax(seq)
3813

3814 3815 3816 3817 3818
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3819
            return out
3820

3821 3822 3823
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3841
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3842
            return out
W
whs 已提交
3843

3844 3845 3846 3847
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3848 3849 3850 3851

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3852 3853
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3854 3855 3856 3857
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3858

Z
zhoushiyu 已提交
3859 3860 3861
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3862 3863 3864
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3865 3866 3867 3868 3869
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3870
            return out1
Z
zhoushiyu 已提交
3871

3872 3873 3874 3875
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3876 3877 3878 3879
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3880

S
ShenLiang 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3890 3891
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3892 3893 3894 3895
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3896 3897 3898 3899 3900
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3901

S
ShenLiang 已提交
3902 3903 3904
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
3905 3906 3907
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
3908 3909 3910 3911 3912 3913 3914
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
3915 3916 3917 3918 3919
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
3931 3932 3933
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
3934
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
3935
            return output
3936 3937 3938 3939 3940 3941

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
3942
            return out
3943 3944 3945 3946

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
3947 3948 3949 3950 3951 3952
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
3953 3954 3955 3956 3957

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
3958
            out = paddle.squeeze(x, axis=[2])
3959
            return out
3960 3961 3962 3963

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
3964 3965 3966 3967 3968 3969
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
3970
            out = paddle.flatten(x, 1, -1, name="flatten")
3971
            return out
3972

Z
zhoukunsheng 已提交
3973 3974 3975 3976 3977 3978 3979
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

3980 3981 3982 3983
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
3984
            return out
3985

3986 3987 3988 3989
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3990 3991 3992 3993 3994 3995
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
3996 3997
            return concat1, concat2

C
cjt222 已提交
3998
    def test_deform_roi_pooling(self):
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4031

4032
    def test_retinanet_target_assign(self):
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4095

4096
    def test_sigmoid_focal_loss(self):
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4119

4120
    def test_addmm(self):
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4136 4137

            out = paddle.addmm(input=input, x=x, y=y)
4138
            return out
4139

4140
    def test_retinanet_detection_output(self):
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4168 4169 4170 4171 4172 4173 4174 4175 4176
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4177 4178 4179
                nms_eta=1.0,
            )
            return nmsed_outs
4180

4181 4182 4183
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4184
            input_length = paddle.static.data(
4185 4186
                name='logits_length', shape=[11], dtype='int64'
            )
4187
            label_length = paddle.static.data(
4188 4189
                name='labels_length', shape=[12], dtype='int64'
            )
4190 4191 4192 4193
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
4194 4195
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
4196 4197 4198 4199 4200 4201
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
4202 4203
            )
            return output
4204

4205 4206 4207 4208
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4209 4210 4211 4212 4213 4214 4215 4216 4217
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4229 4230
                        batch_first=batch_first,
                    )
4231

Y
Yu Yang 已提交
4232

4233 4234 4235 4236
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4258 4259 4260 4261 4262 4263
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4264 4265
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4266
        super().__init__()
4267
        self.weight = self.create_parameter(
4268 4269
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4300 4301
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4302
        super().__init__()
J
Jiabin Yang 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4314
        super().__init__()
J
Jiabin Yang 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4330
if __name__ == '__main__':
4331
    paddle.enable_static()
Y
Yu Yang 已提交
4332
    unittest.main()