determinant_op.cc 6.9 KB
Newer Older
H
huangxu96 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/determinant_op.h"
16

17 18 19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
H
huangxu96 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

namespace paddle {
namespace operators {

class DeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

class DeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of determinant.");
    AddOutput("Out",
              "(Tensor) The output Tensor containing the determinant"
              "value of a square matrix or batches of square matrices ");

    AddComment(R"DOC(
Determinant Operator.)DOC");
  }
};

class DeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class DeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("determinant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(DeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

class SlogDeterminantOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
  }
};

class SlogDeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input", "(Tensor) The input tensor of SlogDeterminant.");
    AddOutput("Out",
              "(Tensor) The output tensor containing the sign of the"
              "determinant and the natural logarithm"
              "of the absolute value of determinant,");

    AddComment(R"DOC(
SlogDeterminant Operator.)DOC");
  }
};

class SlogDeterminantGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
105 106 107 108 109 110 111
    OP_INOUT_CHECK(
        ctx->HasInput("Input"), "Input", "Input", "SlogDeterminantGradOp");
    OP_INOUT_CHECK(
        ctx->HasInput("Out"), "Input", "Out", "SlogDeterminantGradOp");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
H
huangxu96 已提交
112
                   "SlogDeterminantGradOp");
113 114 115
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")),
                   "Output",
                   framework::GradVarName("Input"),
H
huangxu96 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                   "SlogDeterminantGradOp");

    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class SlogDeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("slogdeterminant_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(SlogDeterminantGradNoNeedBufferVarsInferer,
                                    "Input");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
156 157
DECLARE_INFER_SHAPE_FUNCTOR(determinant,
                            DeterminantInferShapeFunctor,
158
                            PD_INFER_META(phi::UnchangedInferMeta));
159 160 161
REGISTER_OPERATOR(determinant,
                  ops::DeterminantOp,
                  ops::DeterminantOpMaker,
H
huangxu96 已提交
162
                  ops::DeterminantGradOpMaker<paddle::framework::OpDesc>,
163 164
                  ops::DeterminantGradOpMaker<paddle::imperative::OpBase>,
                  DeterminantInferShapeFunctor);
H
huangxu96 已提交
165

166 167
DECLARE_INFER_SHAPE_FUNCTOR(determinant_grad,
                            DeterminantGradInferShapeFunctor,
168
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
169 170
REGISTER_OPERATOR(determinant_grad,
                  ops::DeterminantGradOp,
171
                  DeterminantGradInferShapeFunctor);
H
huangxu96 已提交
172

173 174
REGISTER_OPERATOR(slogdeterminant,
                  ops::SlogDeterminantOp,
H
huangxu96 已提交
175 176 177 178 179
                  ops::SlogDeterminantOpMaker,
                  ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
                  ops::SlogDeterminantGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(slogdeterminant_grad,
180
                  ops::SlogDeterminantGradOp)  // reuse det grad op
H
huangxu96 已提交
181 182

REGISTER_OP_CPU_KERNEL(
183 184
    slogdeterminant,
    ops::SlogDeterminantKernel<plat::CPUDeviceContext, float>,
H
huangxu96 已提交
185 186 187 188
    ops::SlogDeterminantKernel<plat::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
    slogdeterminant_grad,
189 190
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, float>,
    ops::SlogDeterminantGradKernel<plat::CPUDeviceContext, double>);