analyzer_tester.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <google/protobuf/text_format.h>
16
#include <gtest/gtest.h>
17 18

#include "paddle/fluid/inference/analysis/analyzer.h"
19
#include "paddle/fluid/inference/analysis/ut_helper.h"
20
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
21
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
22
#include "paddle/phi/backends/dynload/port.h"
23

24 25 26 27
namespace paddle {
namespace inference {
namespace analysis {

T
tensor-tang 已提交
28
using namespace framework;  // NOLINT
Y
Yan Chunwei 已提交
29

Y
Yan Chunwei 已提交
30 31
TEST(Analyzer, analysis_without_tensorrt) {
  Argument argument;
32
  argument.SetDisableLogs(false);
33
  argument.SetModelDir(FLAGS_inference_model_dir);
34
  argument.SetEnableAnalysisOptim(false);
S
update  
Superjomn 已提交
35
  argument.SetUseGPU(false);
36 37
  argument.SetAnalysisPasses({"ir_graph_build_pass",
                              "ir_analysis_pass",
Y
Yan Chunwei 已提交
38
                              "ir_params_sync_among_devices_pass"});
39

40 41 42 43
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
44 45
TEST(Analyzer, analysis_with_tensorrt) {
  Argument argument;
46
  argument.SetDisableLogs(false);
47
  argument.SetEnableAnalysisOptim(false);
48 49 50
  argument.SetTensorRtMaxBatchSize(3);
  argument.SetTensorRtWorkspaceSize(1 << 20);
  argument.SetModelDir(FLAGS_inference_model_dir);
S
update  
Superjomn 已提交
51
  argument.SetUseGPU(false);
52 53
  argument.SetAnalysisPasses({"ir_graph_build_pass",
                              "ir_analysis_pass",
Y
Yan Chunwei 已提交
54
                              "ir_params_sync_among_devices_pass"});
55

56 57 58 59
  Analyzer analyser;
  analyser.Run(&argument);
}

N
nhzlx 已提交
60
void TestWord2vecPrediction(const std::string& model_path) {
61 62 63 64
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
S
superjomn 已提交
65
  auto predictor = ::paddle::CreatePaddlePredictor<NativeConfig>(config);
66 67 68 69 70 71 72 73 74 75 76 77 78 79

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

80 81
  PADDLE_ENFORCE_EQ(outputs.size(),
                    1UL,
82 83
                    platform::errors::PreconditionNotMet(
                        "Output size should be 1, but got %d", outputs.size()));
84
  // Check the output buffer size and result of each tid.
85 86
  PADDLE_ENFORCE_EQ(outputs.front().data.length(),
                    33168UL,
87 88 89
                    platform::errors::PreconditionNotMet(
                        "Output's data length should be 33168 but got %d",
                        outputs.front().data.length()));
90 91
  float result[5] = {
      0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
92 93
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
P
peizhilin 已提交
94 95
  for (size_t i = 0; i < std::min(static_cast<size_t>(5UL), num_elements);
       i++) {
M
minqiyang 已提交
96 97
    LOG(INFO) << "data: " << static_cast<float*>(outputs.front().data.data())[i]
              << " result: " << result[i];
98 99
    EXPECT_NEAR(
        static_cast<float*>(outputs.front().data.data())[i], result[i], 1e-3);
100 101 102
  }
}

103 104
TEST(Analyzer, word2vec_without_analysis) {
  TestWord2vecPrediction(FLAGS_inference_model_dir);
105 106
}

107 108 109
}  // namespace analysis
}  // namespace inference
}  // namespace paddle