adam_op.cc 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adam_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21 22 23 24 25
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
M
minqiyang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39
    // PADDLE_ENFORCE(ctx->HasInput("Param"),
    // "Input(Param) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("Grad"),
    // "Input(Grad) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("Moment1"),
    // "Input(Moment1) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("Moment2"),
    // "Input(Moment2) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
    // "Input(LearningRate) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("Beta1Pow"),
    // "Input(Beta1Pow) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasInput("Beta2Pow"),
    // "Input(Beta2Pow) of AdamOp should not be null.");
40

M
minqiyang 已提交
41 42 43 44 45 46
    // PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
    // "Output(ParamOut) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasOutput("Moment1Out"),
    // "Output(Moment1Out) of AdamOp should not be null.");
    // PADDLE_ENFORCE(ctx->HasOutput("Moment2Out"),
    // "Output(Moment2Out) of AdamOp should not be null.");
47 48

    auto lr_dims = ctx->GetInputDim("LearningRate");
M
minqiyang 已提交
49 50
    // PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
    // "Learning rate should have 1 dimension");
51
    auto beta1_pow_dims = ctx->GetInputDim("Beta1Pow");
M
minqiyang 已提交
52 53
    // PADDLE_ENFORCE_EQ(framework::product(beta1_pow_dims), 1,
    // "Beta1 power accumulator should have 1 dimension");
54
    auto beta2_pow_dims = ctx->GetInputDim("Beta2Pow");
M
minqiyang 已提交
55 56
    // PADDLE_ENFORCE_EQ(framework::product(beta2_pow_dims), 1,
    // "Beta2 power accumulator should have 1 dimension");
57 58

    auto param_dims = ctx->GetInputDim("Param");
M
minqiyang 已提交
59 60 61 62 63 64 65 66 67 68 69 70
    // if (ctx->GetInputsVarType("Grad")[0] ==
    // framework::proto::VarType::LOD_TENSOR) {
    // PADDLE_ENFORCE_EQ(
    // param_dims, ctx->GetInputDim("Grad"),
    // "Param and Grad input of AdamOp should have same dimension");
    // }
    // PADDLE_ENFORCE_EQ(
    // param_dims, ctx->GetInputDim("Moment1"),
    // "Param and Moment1 input of AdamOp should have same dimension");
    // PADDLE_ENFORCE_EQ(
    // param_dims, ctx->GetInputDim("Moment2"),
    // "Param and Moment2 input of AdamOp should have same dimension");
71 72 73 74 75

    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("Moment1Out", param_dims);
    ctx->SetOutputDim("Moment2Out", param_dims);
  }
M
minqiyang 已提交
76

D
dzhwinter 已提交
77 78 79 80 81 82
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("Param")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
83 84 85 86
};

class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
87
  void Make() override {
88 89 90 91 92 93 94 95
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

96 97 98
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);

    AddComment(R"DOC(
116
Adam Optimizer.
117 118

This implements the Adam optimizer from Section 2 of the Adam
119 120 121
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
122 123 124

Adam updates:

125 126 127 128 129 130 131
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
132 133 134 135 136 137 138 139 140

)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker);
Q
QI JUN 已提交
141 142 143
REGISTER_OP_CPU_KERNEL(
    adam, ops::AdamOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdamOpKernel<paddle::platform::CPUDeviceContext, double>);