cifar.py 9.1 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tarfile
import numpy as np
import six
18
from PIL import Image
K
Kaipeng Deng 已提交
19 20
from six.moves import cPickle as pickle

21
import paddle
K
Kaipeng Deng 已提交
22
from paddle.io import Dataset
23
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
24

25
__all__ = []
K
Kaipeng Deng 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

URL_PREFIX = 'https://dataset.bj.bcebos.com/cifar/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'

MODE_FLAG_MAP = {
    'train10': 'data_batch',
    'test10': 'test_batch',
    'train100': 'train',
    'test100': 'test'
}


class Cifar10(Dataset):
    """
    Implementation of `Cifar-10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 10 categories.

    Args:
47
        data_file (str, optional): Path to data file, can be set None if
48
            :attr:`download` is True. Default None, default data path: ~/.cache/paddle/dataset/cifar
49 50 51 52 53 54
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): transform to perform on image, None for no transform. Default: None.
        download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
55
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
56 57

    Returns:
58
        :ref:`api_paddle_io_Dataset`. An instance of Cifar10 dataset.
K
Kaipeng Deng 已提交
59 60 61 62 63

    Examples:

        .. code-block:: python

64 65
            import itertools
            import paddle.vision.transforms as T
66
            from paddle.vision.datasets import Cifar10
K
Kaipeng Deng 已提交
67 68


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            cifar10 = Cifar10()
            print(len(cifar10))
            # 50000

            for i in range(5):  # only show first 5 images
                img, label = cifar10[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (32, 32) 6


            transform = T.Compose(
                [
                    T.Resize(64),
                    T.ToTensor(),
                    T.Normalize(
                        mean=[0.5, 0.5, 0.5],
                        std=[0.5, 0.5, 0.5],
                        to_rgb=True,
                    ),
                ]
            )

            cifar10_test = Cifar10(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(cifar10_test))
            # 10000

            for img, label in itertools.islice(iter(cifar10_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [3, 64, 64] 3
K
Kaipeng Deng 已提交
104 105 106 107 108 109
    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
110 111
                 download=True,
                 backend=None):
112 113
        assert mode.lower() in ['train', 'test'], \
            "mode.lower() should be 'train' or 'test', but got {}".format(mode)
K
Kaipeng Deng 已提交
114 115
        self.mode = mode.lower()

116 117 118 119
        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
120 121
                "Expected backend are one of ['pil', 'cv2'], but got {}".format(
                    backend))
122 123
        self.backend = backend

K
Kaipeng Deng 已提交
124 125 126 127 128
        self._init_url_md5_flag()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
129 130 131 132
            self.data_file = _check_exists_and_download(data_file,
                                                        self.data_url,
                                                        self.data_md5, 'cifar',
                                                        download)
K
Kaipeng Deng 已提交
133 134 135 136 137 138

        self.transform = transform

        # read dataset into memory
        self._load_data()

139 140
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
141 142 143 144 145 146 147 148 149 150 151
    def _init_url_md5_flag(self):
        self.data_url = CIFAR10_URL
        self.data_md5 = CIFAR10_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '10']

    def _load_data(self):
        self.data = []
        with tarfile.open(self.data_file, mode='r') as f:
            names = (each_item.name for each_item in f
                     if self.flag in each_item.name)

152 153
            names = sorted(list(names))

K
Kaipeng Deng 已提交
154
            for name in names:
T
tianshuo78520a 已提交
155
                batch = pickle.load(f.extractfile(name), encoding='bytes')
K
Kaipeng Deng 已提交
156 157

                data = batch[six.b('data')]
158 159
                labels = batch.get(six.b('labels'),
                                   batch.get(six.b('fine_labels'), None))
K
Kaipeng Deng 已提交
160 161
                assert labels is not None
                for sample, label in six.moves.zip(data, labels):
162
                    self.data.append((sample, label))
K
Kaipeng Deng 已提交
163 164 165

    def __getitem__(self, idx):
        image, label = self.data[idx]
166
        image = np.reshape(image, [3, 32, 32])
167 168 169
        image = image.transpose([1, 2, 0])

        if self.backend == 'pil':
L
LielinJiang 已提交
170
            image = Image.fromarray(image.astype('uint8'))
K
Kaipeng Deng 已提交
171 172
        if self.transform is not None:
            image = self.transform(image)
173 174

        if self.backend == 'pil':
175
            return image, np.array(label).astype('int64')
176

177
        return image.astype(self.dtype), np.array(label).astype('int64')
K
Kaipeng Deng 已提交
178 179 180 181 182 183 184 185 186 187 188

    def __len__(self):
        return len(self.data)


class Cifar100(Cifar10):
    """
    Implementation of `Cifar-100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 100 categories.

    Args:
189 190 191 192 193 194 195 196
        data_file (str, optional): path to data file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/cifar
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): transform to perform on image, None for no transform. Default: None.
        download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
197
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
198 199

    Returns:
200
        :ref:`api_paddle_io_Dataset`. An instance of Cifar100 dataset.
K
Kaipeng Deng 已提交
201 202 203 204 205

    Examples:

        .. code-block:: python

206 207
            import itertools
            import paddle.vision.transforms as T
208
            from paddle.vision.datasets import Cifar100
K
Kaipeng Deng 已提交
209 210


211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
            cifar100 = Cifar100()
            print(len(cifar100))
            # 50000

            for i in range(5):  # only show first 5 images
                img, label = cifar100[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (32, 32) 19


            transform = T.Compose(
                [
                    T.Resize(64),
                    T.ToTensor(),
                    T.Normalize(
                        mean=[0.5, 0.5, 0.5],
                        std=[0.5, 0.5, 0.5],
                        to_rgb=True,
                    ),
                ]
            )

            cifar100_test = Cifar100(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(cifar100_test))
            # 10000

            for img, label in itertools.islice(iter(cifar100_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [3, 64, 64] 49
K
Kaipeng Deng 已提交
246 247 248 249 250 251
    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
252 253 254 255
                 download=True,
                 backend=None):
        super(Cifar100, self).__init__(data_file, mode, transform, download,
                                       backend)
K
Kaipeng Deng 已提交
256 257 258 259 260

    def _init_url_md5_flag(self):
        self.data_url = CIFAR100_URL
        self.data_md5 = CIFAR100_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '100']