dist_word2vec.py 5.0 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16

T
typhoonzero 已提交
17 18
from test_dist_base import TestDistRunnerBase, runtime_main

19 20 21
import paddle
import paddle.fluid as fluid

T
typhoonzero 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
IS_SPARSE = True
EMBED_SIZE = 32
HIDDEN_SIZE = 256
N = 5

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


class TestDistWord2vec2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        BATCH_SIZE = batch_size

        def __network__(words):
            embed_first = fluid.layers.embedding(
                input=words[0],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
43
                    name='shared_w',
44 45 46
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
47 48 49 50 51 52
            embed_second = fluid.layers.embedding(
                input=words[1],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
53
                    name='shared_w',
54 55 56
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
57 58 59 60 61 62
            embed_third = fluid.layers.embedding(
                input=words[2],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
63
                    name='shared_w',
64 65 66
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
67 68 69 70 71 72
            embed_forth = fluid.layers.embedding(
                input=words[3],
                size=[dict_size, EMBED_SIZE],
                dtype='float32',
                is_sparse=IS_SPARSE,
                param_attr=fluid.ParamAttr(
W
Wu Yi 已提交
73
                    name='shared_w',
74 75 76
                    initializer=fluid.initializer.Constant(value=0.1),
                ),
            )
T
typhoonzero 已提交
77 78 79

            concat_embed = fluid.layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
80 81
                axis=1,
            )
C
Charles-hit 已提交
82 83
            hidden1 = paddle.static.nn.fc(
                x=concat_embed,
T
typhoonzero 已提交
84
                size=HIDDEN_SIZE,
C
Charles-hit 已提交
85 86
                activation='sigmoid',
                weight_attr=fluid.ParamAttr(
87 88 89
                    initializer=fluid.initializer.Constant(value=0.1)
                ),
            )
C
Charles-hit 已提交
90 91
            predict_word = paddle.static.nn.fc(
                x=hidden1,
T
typhoonzero 已提交
92
                size=dict_size,
C
Charles-hit 已提交
93 94
                activation='softmax',
                weight_attr=fluid.ParamAttr(
95 96 97
                    initializer=fluid.initializer.Constant(value=0.1)
                ),
            )
98 99 100 101 102
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=words[4],
                reduction='none',
                use_softmax=False,
103
            )
104
            avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
105 106 107 108 109
            return avg_cost, predict_word

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

G
GGBond8488 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
        first_word = paddle.static.data(
            name='firstw', shape=[-1, 1], dtype='int64'
        )
        second_word = paddle.static.data(
            name='secondw', shape=[-1, 1], dtype='int64'
        )
        third_word = paddle.static.data(
            name='thirdw', shape=[-1, 1], dtype='int64'
        )
        forth_word = paddle.static.data(
            name='forthw', shape=[-1, 1], dtype='int64'
        )
        next_word = paddle.static.data(
            name='nextw', shape=[-1, 1], dtype='int64'
124
        )
T
typhoonzero 已提交
125
        avg_cost, predict_word = __network__(
126 127
            [first_word, second_word, third_word, forth_word, next_word]
        )
T
typhoonzero 已提交
128 129 130 131 132 133

        inference_program = paddle.fluid.default_main_program().clone()

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        sgd_optimizer.minimize(avg_cost)

134 135 136 137 138 139
        train_reader = paddle.batch(
            paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE
        )
        test_reader = paddle.batch(
            paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE
        )
T
typhoonzero 已提交
140

141 142 143 144 145 146 147 148
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            None,
            predict_word,
        )
T
typhoonzero 已提交
149 150 151


if __name__ == "__main__":
152 153
    os.environ['CPU_NUM'] = '1'
    os.environ['USE_CUDA'] = "FALSE"
T
typhoonzero 已提交
154
    runtime_main(TestDistWord2vec2x2)