test_multiprocess_dataloader_static.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader

28 29 30 31
EPOCH_NUM = 3
BATCH_SIZE = 8
IMAGE_SIZE = 32
SAMPLE_NUM = 100
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
CLASS_NUM = 10


class RandomDataset(Dataset):
    def __init__(self, sample_num, class_num):
        self.sample_num = sample_num
        self.class_num = class_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, self.class_num - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


def simple_fc_net_static():
    startup_prog = fluid.Program()
    main_prog = fluid.Program()
    startup_prog.random_seed = 1
    main_prog.random_seed = 1

    with fluid.unique_name.guard():
        with fluid.program_guard(main_prog, startup_prog):
            image = fluid.data(
                name='image', shape=[None, IMAGE_SIZE], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            hidden = image
            param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.8))
            bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.5))
            for hidden_size in [10, 20, 30]:
                hidden = fluid.layers.fc(hidden,
                                         size=hidden_size,
                                         act='tanh',
                                         param_attr=param_attr,
                                         bias_attr=bias_attr)

            predict_label = fluid.layers.fc(hidden,
                                            size=CLASS_NUM,
                                            act='softmax',
                                            param_attr=param_attr,
                                            bias_attr=bias_attr)
            loss = fluid.layers.reduce_mean(
                fluid.layers.cross_entropy(
                    input=predict_label, label=label))

            optimizer = fluid.optimizer.Adam()
            optimizer.minimize(loss)
    return startup_prog, main_prog, image, label, loss


87 88 89 90 91 92
def prepare_places(with_data_parallel, with_cpu=False, with_gpu=True):
    places = []
    if with_cpu:
        places.append([fluid.CPUPlace()])
        if with_data_parallel:
            places.append([fluid.CPUPlace()] * 2)
93

94 95 96 97 98 99 100
    if with_gpu and fluid.core.is_compiled_with_cuda():
        tmp = fluid.cuda_places()[:2]
        assert len(tmp) > 0, "no gpu detected"
        if with_data_parallel:
            places.append(tmp)
        places.append([tmp[0]])
    return places
101 102 103


class TestStaticDataLoader(unittest.TestCase):
104
    def run_main(self, num_workers, places):
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, image, label, loss = simple_fc_net_static()

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
            dataloader = DataLoader(
                dataset,
                feed_list=[image, label],
                places=places,
                num_workers=num_workers,
                batch_size=BATCH_SIZE,
                drop_last=True)
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
123
            if len(places) > 1:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                prog = prog.with_data_parallel(
                    loss_name=loss.name, places=places)

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for d in dataloader:
                    assert len(d) == len(places), "{} != {}".format(
                        len(d), len(places))
                    for i, item in enumerate(d):
                        image = item['image']
                        label = item['label']
                        assert image.shape() == [BATCH_SIZE, IMAGE_SIZE]
                        assert label.shape() == [BATCH_SIZE, 1]
                        assert image._place()._equals(places[i])
                        assert label._place()._equals(places[i])
                    L, = exe.run(program=prog,
                                 feed=d,
                                 fetch_list=[loss],
                                 use_program_cache=True)
                    loss_list.append(np.mean(L))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
160 161 162 163 164 165 166 167 168 169 170
        for p in prepare_places(True):
            results = []
            for num_workers in [0, 2]:
                print(self.__class__.__name__, p, num_workers)
                sys.stdout.flush()
                ret = self.run_main(num_workers=num_workers, places=p)
                results.append(ret)
            diff = np.max(
                np.abs(results[0]['loss'] - results[1]['loss']) /
                np.abs(results[0]['loss']))
            self.assertLess(diff, 1e-2)
171 172 173 174


if __name__ == '__main__':
    unittest.main()