benchmark.cc 18.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/fluid/platform/device_tracer.h"
T
tensor-tang 已提交
24 25
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
26
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
27 28 29 30

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
58
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
59 60 61 62 63 64 65 66 67 68 69 70 71
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
72 73 74

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
75 76
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

91
template <typename KernelTuple, typename... Args>
T
tensor-tang 已提交
92 93
struct BenchFunc {
  // return this function avg time
T
tensor-tang 已提交
94
  // TODO(TJ): clear cache every time
95
  double operator()(const typename KernelTuple::func_type tgt, Args... args) {
T
tensor-tang 已提交
96 97 98
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
99
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
100 101 102
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
103
    auto end = paddle::platform::PosixInNsec() * 1e-3;
104
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
105 106 107 108 109
  }
};

namespace jit = paddle::operators::jit;

110 111 112
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
  BenchFunc<KernelTuple, Args...> benchmark;
T
tensor-tang 已提交
113
  std::vector<std::pair<std::string, double>> infos;
114 115 116
  auto funcs = jit::GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  for (auto f : funcs) {
    infos.push_back(std::make_pair(f.first, benchmark(f.second, args...)));
T
tensor-tang 已提交
117 118 119
  }

  // Test result from Get function
120
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
121 122
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
123
  }
T
tensor-tang 已提交
124 125 126 127
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
128 129
  loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
           << attr << ": ";
T
tensor-tang 已提交
130 131 132 133
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
134 135
}

T
tensor-tang 已提交
136 137
using Tensor = paddle::framework::Tensor;

138 139 140
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
141
  for (int d : TestSizes()) {
T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
151 152
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
                                          d);
T
tensor-tang 已提交
153
    // test inplace
154
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
T
tensor-tang 已提交
155 156
  }
}
157

158 159 160
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
  using T = typename KernelTuple::data_type;
161 162
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
163 164 165 166 167 168
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
169
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
T
tensor-tang 已提交
170
    // test inplace
171
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
172 173 174
  }
}

175 176 177
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
  using T = typename KernelTuple::data_type;
178 179 180 181
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
182
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
183 184 185
  }
}

186 187 188
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
  using T = typename KernelTuple::data_type;
189
  for (int d : TestSizes()) {
T
tensor-tang 已提交
190 191 192 193 194 195
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
196
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
197 198 199
  }
}

200 201 202
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
203 204
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
205
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
206
                                  use_peephole);
T
tensor-tang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
224 225 226 227 228 229 230 231 232
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
233
      BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
234 235 236 237
    }
  }
}

238 239 240
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
  using T = typename KernelTuple::data_type;
241
  for (int d : TestSizes()) {
T
tensor-tang 已提交
242
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
243 244 245 246 247 248 249 250 251 252
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
253 254 255 256
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
257
    BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
258 259 260
  }
}

261 262 263
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
  using T = typename KernelTuple::data_type;
264 265
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
266
  for (auto type : pool_types) {
T
tensor-tang 已提交
267
    for (int w : TestSizes()) {
T
tensor-tang 已提交
268
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
269
      for (int h : TestSizes()) {
T
tensor-tang 已提交
270
        attr.h = h;
T
tensor-tang 已提交
271 272 273 274 275 276
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
277
        BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
278 279 280 281 282
      }
    }
  }
}

283 284 285
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
286 287 288 289 290 291 292 293 294
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  int64_t tbl_h = 1e4;
  for (int tbl_w : {10, 16, 256}) {
    Tensor table;
    table.Resize({tbl_h, tbl_w});
    RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
    const T* table_data = table.data<T>();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
295
        for (int idx_h : {1, 2, 9, 13, 16}) {
296 297 298 299 300 301 302 303 304 305 306
          int64_t out_w = tbl_w * idx_w;
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          Tensor idx, out;
          idx.Resize({idx_h, idx_w});
          out.Resize({out_w});
          RandomVec<int64_t>(idx_h * idx_w,
                             idx.mutable_data<int64_t>(PlaceType()), 0,
                             tbl_h - 1);
          const int64_t* idx_data = idx.data<int64_t>();
          T* o_data = out.mutable_data<T>(PlaceType());
307 308
          BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
                                                o_data, &attr);
309 310 311 312 313 314
        }
      }
    }
  }
}

315 316 317
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
  using T = typename KernelTuple::data_type;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 1000}) {
    for (int grad_w : {1, 2, 8, 16, 30, 256}) {
      // only benchmark inplace
      Tensor param;
      param.Resize({param_h, grad_w});
      T* param_data = param.mutable_data<T>(PlaceType());
      RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
      for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
        Tensor grad;
        grad.Resize({rows_size, grad_w});
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
        RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
                     -2.f, 2.f);
        const T* grad_data = grad.data<T>();
        const int64_t* rows_data = rows.data();
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
348 349
        BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
                                              rows_data, param_data, &attr);
350 351 352 353 354
      }
    }
  }
}

355 356 357
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
358
  for (int m : {1, 2, 3, 4}) {
359
    for (int n : TestSizes()) {
T
tensor-tang 已提交
360
      for (int k : TestSizes()) {
T
tensor-tang 已提交
361 362 363 364 365 366 367 368 369
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
370
        const jit::matmul_attr_t attr{m, n, k};
371 372
        BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
                                              &attr);
T
tensor-tang 已提交
373 374 375 376 377
      }
    }
  }
}

378 379 380
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
  using T = typename KernelTuple::data_type;
381 382 383 384 385 386 387 388
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
389
      BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs, 1);
390 391 392 393
    }
  }
}

394 395 396
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        int sz = left * right;
        Tensor x, mean, var, scale, bias, out;
        x.Resize({n, x_dim_0, x_dim_1});
        out.Resize({n, x_dim_0, x_dim_1});
        mean.Resize({n, x_dim_0});
        var.Resize({n, x_dim_0});
        scale.Resize({x_dim_1});
        bias.Resize({x_dim_1});

        RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);

        const T* scale_data = scale.data<T>();
        const T* bias_data = bias.data<T>();
        T* x_data = x.data<T>();
        T* mean_data = mean.data<T>();
        T* var_data = var.data<T>();
        T* out_data = out.mutable_data<T>(PlaceType());

425 426 427
        BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
                                              mean_data, var_data, scale_data,
                                              bias_data, left, epsilon, right);
428 429 430 431 432
      }
    }
  }
}

433 434 435
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      Tensor x, w, alpha, track;
      x.Resize({seq_len, tag_num});
      w.Resize({tag_num + state_trans_base_idx, tag_num});
      alpha.Resize({seq_len, tag_num});
      track.Resize({seq_len, tag_num});

      RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);

      const T* x_data = x.data<T>();
      const T* w_data = w.data<T>();
      T* alpha_data = alpha.mutable_data<T>(PlaceType());
      int* track_data = track.mutable_data<int>(PlaceType());

455 456
      BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
                                            alpha_data, track_data, tag_num);
457 458 459 460
    }
  }
}

461 462 463
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
464
  for (int64_t w : {1, 16, 64, 100, 256}) {
465 466 467 468
    Tensor x;
    x.Resize({w});
    RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
    const T* x_data = x.data<T>();
469
    for (int h : TestSizes()) {
470 471 472
      Tensor y;
      y.Resize({h * w});
      T* y_data = y.mutable_data<T>(PlaceType());
473 474
      BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
                                            static_cast<int64_t>(h), w);
475 476 477 478
    }
  }
}

479 480 481 482
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
483

484 485
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
486

487 488 489 490 491 492 493
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
494

495 496
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
497

498 499
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
500

501 502 503
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
504

505
using CPUPlace = paddle::platform::CPUPlace;
506

507 508 509 510
#define BENCH_FP32_CPU(name)                                \
  BENCH_JITKERNEL(name, FP32, CPU) {                        \
    BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
  }
511

512 513 514 515 516
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
517

518 519 520
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);

// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);

// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);

// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);

BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);

BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
553

554 555 556 557 558 559
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
560
//     --filter: the bench name would be run
561 562 563 564 565
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
566

567
  RUN_ALL_BENCHMARK();
568
}