generate_phi_kernel_dialect.py 12.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
16
import yaml
17
import sys
18 19 20 21 22
import os
from get_compat_kernel_signature import get_compat_kernels_info

#TODO @DannyIsFunny: more attr types need to be supported.
attr_type_converter = {
23 24 25 26 27 28
    "int": 'SI32Attr',
    "bool": 'BoolAttr',
    "int64_t": 'SI64Attr',
    "float": 'F32Attr',
    "string": 'StrAttr',
    "vector<int>": 'I32ArrayAttr'
29
}
30

31
target_type_converter = {"CPU": "CPU", "GPU": "GPU", "Undefined": "UNK"}
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
layout_type_converter = {
    "NCHW": "NCHW",
    "NHWC": "NHWC",
    "Undefined(AnyLayout)": "ANY"
}
precision_type_converter = {
    "uint8": "UINT8",
    "int8": "INT8",
    "int16": "INT16",
    "int32": "INT32",
    "int64": "INT64",
    "float16": "FLOAT16",
    "bfloat16": "BFLOAT16",
    "float32": "FLOAT32",
    "float64": "FLOAT64",
    "complex64": "COMPLEX64",
    "complex128": "COMPLEX128",
H
huzhiqiang 已提交
49 50
    "bool": "BOOL",
    "Undefined": "UNK"
51 52
}

53 54 55
kernel_types_info_file = "./kernels.json"
kernel_signature_info_file = "./kernel_signature.json"

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
skipped_phi_api_list_file = "./skipped_phi_api.json"


def get_skipped_kernel_list():
    skiped_kernel_list = []
    with open(skipped_phi_api_list_file, 'r') as f:
        skiped_api_list = json.load(f)
    infer_meta_data = get_api_yaml_info("../../")
    for api in infer_meta_data:
        if "kernel" not in api or "infer_meta" not in api:
            continue
        if api["api"] in skiped_api_list["phi_apis"]:
            skiped_kernel_list.append(api["kernel"]["func"])
    skiped_kernel_list += skiped_api_list["phi_kernels"]
    return skiped_kernel_list


def get_api_yaml_info(file_path):
Z
zyfncg 已提交
74 75 76 77 78 79 80 81 82 83 84
    apis = []
    with open(file_path + "/python/paddle/utils/code_gen/api.yaml", 'r') as f:
        api_list = yaml.load(f, Loader=yaml.FullLoader)
        if api_list:
            apis.extend(api_list)
    with open(file_path + "/python/paddle/utils/code_gen/legacy_api.yaml",
              'r') as f:
        legacy_api_list = yaml.load(f, Loader=yaml.FullLoader)
        if legacy_api_list:
            apis.extend(legacy_api_list)
    return apis
85

86 87 88 89 90 91

def generate_kernel_name(op_name, place_str):
    [target_, layout_, precision_] = place_str[1:-1].split(',')
    target_ = target_type_converter[target_.strip()]
    layout_ = layout_type_converter[layout_.strip()]
    precision_ = precision_type_converter[precision_.strip()]
92 93
    class_name_ = "{}{}".format(
        op_name.replace("_", "").title(), "".join([
94 95 96
            target_.strip().title(),
            precision_.strip(),
            layout_.strip().title().title()
97
        ]))
98 99 100 101 102
    alias_ = "{}.{}".format(
        op_name,
        ".".join([target_.strip(),
                  precision_.strip(),
                  layout_.strip()]))
103
    return alias_, class_name_
104 105 106


def generate_attrs_info(op_name, attrs_info):
107
    kernel_attrs_names = {}
108
    attrs_args_ = ""
109 110 111 112
    with open(kernel_signature_info_file) as f:
        kernel_attrs_names = json.load(f)
        kernel_attrs_names.update(get_compat_kernels_info())
    if len(kernel_attrs_names[op_name]["attrs"]) == len(attrs_info):
113
        for index in range(len(attrs_info)):
114
            attr_name = kernel_attrs_names[op_name]["attrs"][index]
115
            attr_type = attr_type_converter[attrs_info[index]]
116 117
            attrs_args_ += '{type_}:${name_},'.format(type_=attr_type,
                                                      name_=attr_name)
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    return attrs_args_[:-1]


def generate_inputs_info(input_info):
    input_args_ = ""
    for index in range(len(input_info)):
        [target_, layout_, precision_] = input_info[index].split(',')
        # todo: check vadility
        target_ = target_type_converter[target_.strip()]
        layout_ = layout_type_converter[layout_.strip()]
        precision_ = precision_type_converter[precision_.strip()]
        input_args_ += " DenseTensor<\"{}\",\"{}\",\"{}\">:$in{},".format(
            target_.strip(), precision_.strip(), layout_.strip(), str(index))
    input_args_ = input_args_[:-1]
    return input_args_


def generate_arguments_info(op_name, input_info, attr_info):
    input_args = generate_inputs_info(input_info)
    attr_args = generate_attrs_info(op_name, attr_info)
138
    context_args = "Context:$dev_ctx"
139 140
    argument_list = [context_args
                     ] + input_args.split(",") + attr_args.split(",")
141 142 143
    while ("" in argument_list):
        argument_list.remove("")
    argument_ = ",".join(argument_list)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    return (("let arguments = (ins {});".format(argument_.strip(","))))


def generate_results_info(output_info):
    output_args_ = "let results = (outs "
    for index in range(len(output_info)):
        [target_, layout_, precision_] = output_info[index].split(',')
        # todo: check vadility
        target_ = target_type_converter[target_.strip()]
        layout_ = layout_type_converter[layout_.strip()]
        precision_ = precision_type_converter[precision_.strip()]
        output_args_ += " DenseTensor<\"{}\",\"{}\",\"{}\">:$out{},".format(
            target_.strip(), precision_.strip(), layout_.strip(), str(index))
    return ("{});".format(output_args_[:-1]))


def generate_supported_kernel_list(load_dict):
    supported_kernels_list_ = []
162 163 164 165
    kernel_attrs_names = {}
    with open(kernel_signature_info_file) as f:
        kernel_attrs_names = json.load(f)
        kernel_attrs_names.update(get_compat_kernels_info())
166 167 168 169 170 171 172 173 174
    for op_name in load_dict:
        kernel_list = load_dict[op_name]
        for kernel_info in kernel_list:
            for kernel_alias_ in kernel_info:
                attributes = kernel_info[kernel_alias_]["attribute"]
                flag = True
                for attribute in attributes:
                    if attribute not in attr_type_converter:
                        flag = False
175
                if flag and op_name in kernel_attrs_names:
176 177
                    supported_kernels_list_.append(op_name)
    supported_kernels_list_ = list(set(supported_kernels_list_))
178 179 180 181
    skipped_kernel_list = get_skipped_kernel_list()
    for skipped_kernel in skipped_kernel_list:
        if skipped_kernel in skipped_kernel_list:
            supported_kernels_list_.remove(skipped_kernel)
182
    return supported_kernels_list_
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206


def scan_kernel_info(load_dict):
    target_type_ = []
    layout_type_ = []
    precision_type_ = []
    for op_name in load_dict:
        kernel_list = load_dict[op_name]
        for kernel_info in kernel_list:
            for kernel_alias_ in kernel_info:
                [target_, layout_, precision_] = kernel_alias_[1:-1].split(',')
                target_type_.append(target_.strip())
                layout_type_.append(layout_.strip())
                precision_type_.append(precision_.strip())
    target_type_ = list(set(target_type_))
    layout_type_ = list(set(layout_type_))
    precision_type_ = list(set(precision_type_))
    print(target_type_)
    print(layout_type_)
    print(precision_type_)


def generate_cpu_kernel_dialect(op_name, kernel_alias_, kernel_info):

207
    alias, class_name = generate_kernel_name(op_name, kernel_alias_)
208 209 210 211 212 213
    summary = 'let summary = "{name}";'.format(name=alias)
    dialect_name = alias.split(".")
    dialect_name = dialect_name[0] + "." + dialect_name[2] + "." + dialect_name[
        3]

    header = 'def {kernel_name} : PDTCPU_Kernel<"{name}",[NoSideEffect]> {left_brace}'.format(
214
        kernel_name=class_name, name=dialect_name.lower(), left_brace="{")
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    inputs_ = kernel_info["input"]
    attributes = kernel_info["attribute"]
    arguments = generate_arguments_info(op_name, inputs_, attributes)

    outputs = kernel_info["output"]
    results = generate_results_info(outputs)

    kernel_dialect = '{header_}\n  {summary_}\n  {arguments_}\n  {results_}\n{right_brace}\n'.format(
        header_=header,
        summary_=summary,
        arguments_=arguments,
        results_=results,
        right_brace="}")
    return kernel_dialect


def generate_gpu_kernel_dialect(op_name, kernel_alias_, kernel_info):

234
    alias, class_name = generate_kernel_name(op_name, kernel_alias_)
235 236 237 238 239 240
    summary = 'let summary = "{name}";'.format(name=alias)
    dialect_name = alias.split(".")
    dialect_name = dialect_name[0] + "." + dialect_name[2] + "." + dialect_name[
        3]

    header = 'def {kernel_name} : PDTGPU_Kernel<"{name}",[NoSideEffect]> {left_brace}'.format(
241
        kernel_name=class_name, name=dialect_name.lower(), left_brace="{")
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    inputs_ = kernel_info["input"]
    attributes = kernel_info["attribute"]
    arguments = generate_arguments_info(op_name, inputs_, attributes)

    outputs = kernel_info["output"]
    results = generate_results_info(outputs)

    kernel_dialect = '{header_}\n  {summary_}\n  {arguments_}\n  {results_}\n{right_brace}\n'.format(
        header_=header,
        summary_=summary,
        arguments_=arguments,
        results_=results,
        right_brace="}")
    return kernel_dialect


def generate_dialect_head():
    comment_ = "/*===- TableGen'source file -----------------------------------------------===*\\\n\
|*                                                                            *|\n\
|* Kernel Definitions                                                         *|\n\
|*                                                                            *|\n\
|* Automatically generated file, do not edit!                                 *|\n\
|* Generated by tools/infrt/generate_pten_kernel_dialect.py                   *|\n\
|*                                                                            *|\n\
\*===----------------------------------------------------------------------===*/\n"

    includes_ = "#ifndef PTEN_KERNELS\n\
#define PTEN_KERNELS\n\
include \"mlir/Interfaces/InferTypeOpInterface.td\"\n\
include \"mlir/Interfaces/LoopLikeInterface.td\"\n\
include \"mlir/IR/OpBase.td\"\n\
include \"paddle/infrt/dialect/phi/ir/infrt_phi_kernel.td\""

    return (comment_ + includes_)


def get_kernel_target(kernel_alias_):
    target = kernel_alias_[1:-1].split(",")
    return target[0]


283 284
def main():
    with open(kernel_types_info_file, "r") as f:
285 286 287 288 289 290
        load_dict = json.load(f)

        head = generate_dialect_head()

        cpu_registry_ = ""
        gpu_registry_ = ""
291
        supported_kernels = generate_supported_kernel_list(load_dict)
292

293 294
        print("Supported kernels:")
        print(supported_kernels)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        for op_name in load_dict:
            if op_name not in supported_kernels:
                continue
            kernel_list = load_dict[op_name]
            for kernel_info in kernel_list:
                for kernel_alias_ in kernel_info:
                    if get_kernel_target(kernel_alias_) == "CPU":
                        kernel_registry = generate_cpu_kernel_dialect(
                            op_name, kernel_alias_, kernel_info[kernel_alias_])
                        cpu_registry_ += kernel_registry
                    elif get_kernel_target(kernel_alias_) == "GPU":
                        kernel_registry = generate_gpu_kernel_dialect(
                            op_name, kernel_alias_, kernel_info[kernel_alias_])
                        gpu_registry_ += kernel_registry
                    else:
310 311
                        print("Unsupported backend:" +
                              get_kernel_target(kernel_alias_))
312 313 314 315 316 317 318 319 320 321 322 323
        end = "#endif  // PTEN_KERNELS"
        with open("../../paddle/infrt/dialect/phi/ir/phi_cpu_kernels.td",
                  "w") as dst:
            dst.write('{start_}\n{dialect_}\n{end_}'.format(
                start_=head, dialect_=cpu_registry_, end_=end))
        with open("../../paddle/infrt/dialect/phi/ir/phi_gpu_kernels.td",
                  "w") as dst:
            dst.write('{start_}\n{dialect_}\n{end_}'.format(
                start_=head, dialect_=gpu_registry_, end_=end))


if __name__ == '__main__':
324 325 326 327 328 329 330 331 332
    if not os.path.exists(kernel_types_info_file):
        print("Error: '{file_name}' not exist!".format(
            file_name=kernel_types_info_file))
    if not os.path.exists(kernel_signature_info_file):
        print("Error: '{file_name}' not exist!".format(
            file_name=kernel_signature_info_file))
    if os.path.exists(kernel_types_info_file) and os.path.exists(
            kernel_signature_info_file):
        main()