test_logical_op.py 8.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18

19
import paddle
H
hong 已提交
20
from paddle.fluid.framework import _test_eager_guard
21 22
from paddle.framework import _non_static_mode
from paddle.static import Executor, Program, program_guard
23

24
SUPPORTED_DTYPES = [
25 26 27 28 29 30 31
    bool,
    np.int8,
    np.int16,
    np.int32,
    np.int64,
    np.float32,
    np.float64,
32 33
]

34 35 36 37 38 39
TEST_META_OP_DATA = [
    {'op_str': 'logical_and', 'binary_op': True},
    {'op_str': 'logical_or', 'binary_op': True},
    {'op_str': 'logical_xor', 'binary_op': True},
    {'op_str': 'logical_not', 'binary_op': False},
]
40

41
TEST_META_SHAPE_DATA = {
42 43 44 45 46 47 48 49 50 51 52 53 54
    'XDimLargerThanYDim1': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 5]},
    'XDimLargerThanYDim2': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 1]},
    'XDimLargerThanYDim3': {'x_shape': [2, 3, 4, 5], 'y_shape': [1, 4, 1]},
    'XDimLargerThanYDim4': {'x_shape': [2, 3, 4, 5], 'y_shape': [3, 4, 1]},
    'XDimLargerThanYDim5': {'x_shape': [2, 3, 1, 5], 'y_shape': [3, 1, 1]},
    'XDimLessThanYDim1': {'x_shape': [4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim2': {'x_shape': [1, 4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim3': {'x_shape': [3, 4, 1], 'y_shape': [2, 3, 4, 5]},
    'XDimLessThanYDim4': {'x_shape': [3, 1, 1], 'y_shape': [2, 3, 1, 5]},
    'XDimLessThanYDim5': {'x_shape': [4, 5], 'y_shape': [2, 3, 4, 5]},
    'Axis1InLargerDim': {'x_shape': [1, 4, 5], 'y_shape': [2, 3, 1, 5]},
    'EqualDim1': {'x_shape': [10, 7], 'y_shape': [10, 7]},
    'EqualDim2': {'x_shape': [1, 1, 4, 5], 'y_shape': [2, 3, 1, 5]},
55 56 57
    'ZeroDim1': {'x_shape': [], 'y_shape': []},
    'ZeroDim2': {'x_shape': [2, 3, 4, 5], 'y_shape': []},
    'ZeroDim3': {'x_shape': [], 'y_shape': [2, 3, 4, 5]},
58 59 60
}

TEST_META_WRONG_SHAPE_DATA = {
61 62
    'ErrorDim1': {'x_shape': [2, 3, 4, 5], 'y_shape': [3, 4]},
    'ErrorDim2': {'x_shape': [2, 3, 4, 5], 'y_shape': [4, 3]},
63 64 65 66 67
}


def run_static(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    paddle.enable_static()
68 69
    startup_program = Program()
    main_program = Program()
70
    place = paddle.CPUPlace()
71
    if use_gpu and paddle.is_compiled_with_cuda():
72
        place = paddle.CUDAPlace(0)
73 74
    exe = Executor(place)
    with program_guard(main_program, startup_program):
75
        x = paddle.static.data(name='x', shape=x_np.shape, dtype=x_np.dtype)
76 77 78 79 80
        op = getattr(paddle, op_str)
        feed_list = {'x': x_np}
        if not binary_op:
            res = op(x)
        else:
81
            y = paddle.static.data(name='y', shape=y_np.shape, dtype=y_np.dtype)
82 83 84 85 86 87 88 89 90
            feed_list['y'] = y_np
            res = op(x, y)
        exe.run(startup_program)
        static_result = exe.run(main_program, feed=feed_list, fetch_list=[res])
    return static_result


def run_dygraph(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    place = paddle.CPUPlace()
91
    if use_gpu and paddle.is_compiled_with_cuda():
92 93 94
        place = paddle.CUDAPlace(0)
    paddle.disable_static(place)
    op = getattr(paddle, op_str)
95
    x = paddle.to_tensor(x_np, dtype=x_np.dtype)
96 97 98
    if not binary_op:
        dygraph_result = op(x)
    else:
99
        y = paddle.to_tensor(y_np, dtype=y_np.dtype)
100 101 102 103
        dygraph_result = op(x, y)
    return dygraph_result


H
hong 已提交
104 105
def run_eager(x_np, y_np, op_str, use_gpu=False, binary_op=True):
    place = paddle.CPUPlace()
106
    if use_gpu and paddle.is_compiled_with_cuda():
H
hong 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
        place = paddle.CUDAPlace(0)
    paddle.disable_static(place)
    with _test_eager_guard():
        op = getattr(paddle, op_str)
        x = paddle.to_tensor(x_np, dtype=x_np.dtype)
        if not binary_op:
            dygraph_result = op(x)
        else:
            y = paddle.to_tensor(y_np, dtype=y_np.dtype)
            dygraph_result = op(x, y)
        return dygraph_result


120 121 122 123
def np_data_generator(np_shape, dtype, *args, **kwargs):
    if dtype == bool:
        return np.random.choice(a=[True, False], size=np_shape).astype(bool)
    else:
124
        return np.random.normal(0, 1, np_shape).astype(dtype)
125 126 127 128 129 130 131 132 133 134 135


def test(unit_test, use_gpu=False, test_error=False):
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        meta_data['use_gpu'] = use_gpu
        np_op = getattr(np, meta_data['op_str'])
        META_DATA = dict(TEST_META_SHAPE_DATA)
        if test_error:
            META_DATA = dict(TEST_META_WRONG_SHAPE_DATA)
        for shape_data in META_DATA.values():
136
            for data_type in SUPPORTED_DTYPES:
137 138 139 140 141 142
                meta_data['x_np'] = np_data_generator(
                    shape_data['x_shape'], dtype=data_type
                )
                meta_data['y_np'] = np_data_generator(
                    shape_data['y_shape'], dtype=data_type
                )
143 144
                if meta_data['binary_op'] and test_error:
                    # catch C++ Exception
145 146 147 148 149 150
                    unit_test.assertRaises(
                        BaseException, run_static, **meta_data
                    )
                    unit_test.assertRaises(
                        BaseException, run_dygraph, **meta_data
                    )
151 152 153
                    continue
                static_result = run_static(**meta_data)
                dygraph_result = run_dygraph(**meta_data)
H
hong 已提交
154
                eager_result = run_eager(**meta_data)
155 156 157 158 159
                if meta_data['binary_op']:
                    np_result = np_op(meta_data['x_np'], meta_data['y_np'])
                else:
                    np_result = np_op(meta_data['x_np'])
                unit_test.assertTrue((static_result == np_result).all())
160
                unit_test.assertTrue(
161 162
                    (dygraph_result.numpy() == np_result).all()
                )
H
hong 已提交
163
                unit_test.assertTrue((eager_result.numpy() == np_result).all())
164 165 166 167 168


def test_type_error(unit_test, use_gpu, type_str_map):
    def check_type(op_str, x, y, binary_op):
        op = getattr(paddle, op_str)
169
        error_type = ValueError
170 171 172 173 174
        if isinstance(x, np.ndarray):
            x = paddle.to_tensor(x)
            y = paddle.to_tensor(y)
            error_type = BaseException
        if binary_op:
175
            if type_str_map['x'] != type_str_map['y']:
176
                unit_test.assertRaises(error_type, op, x=x, y=y)
177
            if not _non_static_mode():
178
                error_type = TypeError
179 180
                unit_test.assertRaises(error_type, op, x=x, y=y, out=1)
        else:
181
            if not _non_static_mode():
182
                error_type = TypeError
183 184 185
                unit_test.assertRaises(error_type, op, x=x, out=1)

    place = paddle.CPUPlace()
186
    if use_gpu and paddle.is_compiled_with_cuda():
187 188 189 190 191 192 193 194 195 196 197 198 199 200
        place = paddle.CUDAPlace(0)
    for op_data in TEST_META_OP_DATA:
        meta_data = dict(op_data)
        binary_op = meta_data['binary_op']

        paddle.disable_static(place)
        x = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['x'])
        y = np.random.choice(a=[0, 1], size=[10]).astype(type_str_map['y'])
        check_type(meta_data['op_str'], x, y, binary_op)

        paddle.enable_static()
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
201 202 203 204 205 206
            x = paddle.static.data(
                name='x', shape=[10], dtype=type_str_map['x']
            )
            y = paddle.static.data(
                name='y', shape=[10], dtype=type_str_map['y']
            )
207 208 209 210
            check_type(meta_data['op_str'], x, y, binary_op)


def type_map_factory():
211 212 213 214 215
    return [
        {'x': x_type, 'y': y_type}
        for x_type in SUPPORTED_DTYPES
        for y_type in SUPPORTED_DTYPES
    ]
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242


class TestCPU(unittest.TestCase):
    def test(self):
        test(self)

    def test_error(self):
        test(self, False, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, False, type_map)


class TestCUDA(unittest.TestCase):
    def test(self):
        test(self, True)

    def test_error(self):
        test(self, True, True)

    def test_type_error(self):
        type_map_list = type_map_factory()
        for type_map in type_map_list:
            test_type_error(self, True, type_map)

243 244

if __name__ == '__main__':
H
hong 已提交
245
    paddle.enable_static()
246
    unittest.main()