lookup_table_utils.py 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import time
import logging

from paddle.fluid import core
from paddle.fluid import io
from paddle.fluid import Program

__all__ = [
T
tangwei12 已提交
26
    "load_persistables_for_increment", "load_persistables_for_inference",
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    "convert_dist_to_sparse_program"
]

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
_logger = logging.getLogger("lookup_table_utils")
_logger.setLevel(logging.INFO)

model_filename = "__model__"
lookup_table_dir = "__lookup_table__"


def __insert_lookup_sparse_table_op(main_program, idx, ids, w, out):
    main_program.global_block()._insert_op(
        index=idx,
        type="lookup_sparse_table",
        inputs={"Ids": [ids],
                "W": [w]},
        outputs={"Out": [out]},
        attrs={
            "is_distributed": False,
            "is_sparse": True,
            "grad_inplace": False
        })


def __get_prefetch_op_tuples(main_program):
    # current lookup tables op is split_ids->prefetch->merge_ids
    prefetch_op_tuples = None
    op_types = [op.type for op in main_program.global_block().ops]

    for i in range(len(op_types)):
        if op_types[i] == "prefetch":
            if op_types[i - 1] == "split_ids" and op_types[i +
                                                           1] == "merge_ids":
                split_ids_op_id = i - 1
                split_ids_inputs = main_program.global_block().ops[i - 1].input(
                    "Ids")
                prefetch_op_inputs = main_program.global_block().ops[i].input(
                    "X")
                prefetch_op_outputs = main_program.global_block().ops[i].output(
                    "Out")
                merge_ids_outputs = main_program.global_block().ops[
                    i + 1].output("Out")

                need_delete_vars = []
                need_delete_vars.extend(prefetch_op_inputs)
                need_delete_vars.extend(prefetch_op_outputs)

                prefetch_op_tuples = (split_ids_op_id, split_ids_inputs,
                                      merge_ids_outputs, need_delete_vars)
                break
    return prefetch_op_tuples


T
tangwei12 已提交
81 82 83 84 85 86 87 88 89 90 91
def convert_dist_to_sparse_program(program):
    """
    WARNING: this function will only be used for distributed training with distributed lookup table.
    when we train model with distributed lookup table but want to do the local inference, we can use
    this function to convert the train program with distributed lookup table to sparse lookup table.

    :param program(Program): the program must be the trainer program, which will be get by the distribute transpiler.
    :return:
        program: The `program` is a Program, it's the program replace distributed lookup table to sparse lookup table.
    """
    if not program._distributed_lookup_table:
92 93 94 95 96
        _logger.warn(
            "There are no distributed lookup tables need to be converted")
        return

    # create table param and grad var in pserver program
T
tangwei12 已提交
97 98 99 100
    origin_emb_var = "{}.origin".format(program._distributed_lookup_table)
    emb_var = program._distributed_lookup_table
    program.global_block()._rename_var(emb_var, origin_emb_var)
    origin_param_var = program.global_block().vars[origin_emb_var]
101

T
tangwei12 已提交
102
    param_var = program.global_block().create_var(
103 104 105 106 107 108 109
        name=emb_var,
        shape=origin_param_var.shape,
        dtype=origin_param_var.dtype,
        type=core.VarDesc.VarType.SELECTED_ROWS,
        persistable=True)
    # parameter must be selected rows
    param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
T
tangwei12 已提交
110
    program._sync_with_cpp()
111

T
tangwei12 已提交
112
    prefetch_op_tuples = __get_prefetch_op_tuples(program)
113 114 115 116

    split_ids_id = prefetch_op_tuples[0]

    for idx in range(split_ids_id + 2, split_ids_id - 1, -1):
T
tangwei12 已提交
117 118
        program.global_block()._remove_op(idx)
    program.desc.flush()
119 120 121 122 123

    in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2])

    for in_out_pair in in_out_pairs:
        idx = split_ids_id
T
tangwei12 已提交
124 125 126 127 128
        ids = program.global_block().vars[in_out_pair[0]]
        out = program.global_block().vars[in_out_pair[1]]
        __insert_lookup_sparse_table_op(program, idx, ids, param_var, out)
        program.desc.flush()
    return program
129 130


T
tangwei12 已提交
131
def _load_persistable_vars(executor, dirname, program, lookup_table_vars):
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    def _is_checkpoint_var(exclude_fluid_vars=None):
        """
        the checkpoint will not save or load all the variables.
        var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

        : param var(Variable)
        """

        if exclude_fluid_vars is None:
            exclude_fluid_vars = []

        def is_valid(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.RAW:
                return False
            # @GRAD are named for gradient variables, checkpoint will not save it.
            if "@GRAD" in var.name:
                return False
            # .trainer_ are named for distribute train variables, checkpoint will not save it.
            if ".trainer_" in var.name:
                return False

            # .block is named for distribute train variables, checkpoint will not save it.
            if ".block" in var.name:
                return False

            if "tmp_" in var.name:
                return False

            if var.name in exclude_fluid_vars:
                return False

            return var.persistable

        return is_valid

T
tangwei12 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    io.load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var(lookup_table_vars),
        filename=None)


def load_persistables_for_increment(dirname, executor, program,
                                    lookup_table_var, lookup_table_var_path):
    """
    WARNING: this function will only be used for distributed training with distributed lookup table.
    for increment trainning, the pserver will not only load dense variables,
    but also load the suitable lookup table var. Because of slice lookup table
    var with HASH, we must load the correct slice var.


    :param dirname(str): The directory path
    :param executor(Executor): The executor to run for loading inference model.
    :param program(Program): The parameter server program, which will run on Pserver.
    :param lookup_table_var: the distributed lookup tables var name.
    :param lookup_table_var_path: the the distributed lookup tables var location.
    :return: None
    """

    def __load_lookup_table_vars(executor, main_program, lookup_table_var,
                                 lookup_table_var_path):
        emb_var = main_program.global_block().var(lookup_table_var)

        load_program = Program()
        load_block = load_program.global_block()
        load_block.append_op(
            type='load',
            inputs={},
            outputs={'Out': [emb_var]},
            attrs={'file_path': lookup_table_var_path})
        executor.run(load_program)

    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

    if not os.path.exists(lookup_table_var_path):
        raise ValueError("There is no file named '%s'", lookup_table_var_path)

    if not isinstance(program, Program):
        raise ValueError("program must be an instance of fluid.Program")

    _logger.info("Start Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))

    _load_persistable_vars(executor, dirname, program, [lookup_table_var])
    __load_lookup_table_vars(executor, program, lookup_table_var,
                             lookup_table_var_path)

    _logger.info("Finish Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))


def load_persistables_for_inference(dirname, executor, program,
                                    lookup_table_var_name):
    """
    WARNING: this function will only be used for inference with distributed lookup table.
    Inference with distributed lookup table is a little funky, this function will load distributed
    lookup table vars into sparse var, can be used in local inference mode.

    :param dirname(str): The directory path
    :param executor(Executor): The executor to run for loading inference model.
    :param program(Program): The parameter server program, which will run on Pserver.
    :param lookup_table_var_name: the distributed lookup tables var name.
    :return: None
    """

    def __load_lookup_table_vars(executor, dirname, main_program,
                                 lookup_table_vars):
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        if not os.path.isdir(dirname):
            raise ValueError("There is no directory named '%s'", dirname)

        lookup_table_dirname = os.path.join(dirname, lookup_table_dir)

        emb_var_name = lookup_table_vars[0]
        emb_var = main_program.global_block().var(emb_var_name)

        emb_files = []
        for emb_name in os.listdir(lookup_table_dirname):
            if emb_var_name in emb_name:
                emb_files.append(emb_name)

        convert_program = Program()
        global_block = convert_program.global_block()

        emb_var = global_block.create_var(
            name=emb_var.name,
            shape=emb_var.shape,
            dtype=emb_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
        emb_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)

        sums = []

        for i, emb_file in enumerate(emb_files):
            var_name = "{}_{}".format(emb_var.name, i)
            param_var = global_block.create_var(
                name=var_name,
                shape=emb_var.shape,
                dtype=emb_var.dtype,
                type=core.VarDesc.VarType.SELECTED_ROWS,
                persistable=True)
            param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
            global_block.append_op(
                type='load',
                inputs={},
                outputs={'Out': [param_var]},
                attrs={
                    'file_path': os.path.join(lookup_table_dirname, var_name)
                })
            sums.append(param_var)
        global_block.append_op(
            type='sum', inputs={"X": sums}, outputs={'Out': emb_var}, attrs={})
        global_block.append_op(type='delete_var', inputs={'X': sums})
        executor.run(convert_program)

    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

T
tangwei12 已提交
296 297 298 299 300
    if program:
        if not isinstance(program, Program):
            raise ValueError("program must be an instance of fluid.Program")
    else:
        local_model = os.path.join(dirname, model_filename)
301

T
tangwei12 已提交
302 303
        with open(local_model, "rb") as f:
            program_desc_str = f.read()
304

T
tangwei12 已提交
305
        program = Program.parse_from_string(program_desc_str)
306

T
tangwei12 已提交
307 308 309
        if not core._is_program_version_supported(program._version()):
            raise ValueError("Unsupported program version: %d\n" %
                             program._version())
310

T
tangwei12 已提交
311 312 313 314 315 316 317
    _logger.info("Start Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))

    _load_persistable_vars(executor, dirname, program, [lookup_table_var_name])
    __load_lookup_table_vars(executor, dirname, program,
                             [lookup_table_var_name])
318

T
tangwei12 已提交
319 320 321
    _logger.info("Finish Load Sparse Program With "
                 "Distributed Lookup Table Vars from {}, time = {}".format(
                     dirname, time.ctime()))
322

T
tangwei12 已提交
323
    return program