dist_mnist_batch_merge.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from dist_mnist import cnn_model
from test_dist_base import TestDistRunnerBase, runtime_main

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import paddle
import paddle.fluid as fluid

DTYPE = "float32"


def test_merge_reader(repeat_batch_size=8):
    orig_reader = paddle.dataset.mnist.test()
    record_batch = []
    b = 0
    for d in orig_reader():
        if b >= repeat_batch_size:
            break
        record_batch.append(d)
        b += 1
    while True:
        for d in record_batch:
            yield d


class TestDistMnist2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2):
        # Input data
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        # Train program
        predict = cnn_model(images)
        cost = fluid.layers.cross_entropy(input=predict, label=label)
47
        avg_cost = paddle.mean(x=cost)
48 49 50

        # Evaluator
        batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
51
        batch_acc = paddle.static.accuracy(
52 53
            input=predict, label=label, total=batch_size_tensor
        )
54 55 56 57 58 59 60

        inference_program = fluid.default_main_program().clone()
        # Optimization
        opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)

        # Reader
        train_reader = paddle.batch(test_merge_reader, batch_size=batch_size)
61 62 63
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size
        )
64
        opt.minimize(avg_cost)
65 66 67 68 69 70 71 72
        return (
            inference_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        )
73 74 75 76


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)