nn.py 362.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'conv2d',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
L
lvmengsi 已提交
76
    'instance_norm',
H
heqiaozhi 已提交
77
    'data_norm',
X
Xin Pan 已提交
78
    'reduce_mean',
Z
zhoukunsheng 已提交
79 80
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
D
dengkaipeng 已提交
92
    'spectral_norm',
X
Xin Pan 已提交
93 94 95 96 97
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
98
    'lod_append',
X
Xin Pan 已提交
99 100 101
    'pad',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
102
    'resize_trilinear',
103
    'resize_nearest',
104
    'gather_nd',
X
Xin Pan 已提交
105 106 107
    'relu',
    'log',
    'prelu',
Z
zhoukunsheng 已提交
108
    'unique',
109
    'unique_with_counts',
X
Xin Pan 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'sum',
    'slice',
    'shape',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
124
    'space_to_depth',
125
    'affine_channel',
B
barrierye 已提交
126
    'similarity_focus',
M
minqiyang 已提交
127
    'hash',
D
dengkaipeng 已提交
128
    'grid_sampler',
G
gmcather 已提交
129 130
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
131
    'bilinear_tensor_product',
C
chengduo 已提交
132 133
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
134
    'temporal_shift',
S
sneaxiy 已提交
135
    'py_func',
R
ruri 已提交
136
    'pixel_shuffle',
137
    'fsp_matrix',
H
heqiaozhi 已提交
138
    'continuous_value_model',
Z
zhoukunsheng 已提交
139
    'where',
Z
zhoukunsheng 已提交
140
    'sign',
141
    'unfold',
C
cjt222 已提交
142
    'deformable_roi_pooling',
143
    'shard_index',
H
huangjun12 已提交
144
    'hard_swish',
K
Kaipeng Deng 已提交
145
    'mish',
G
Guo Sheng 已提交
146
    'gather_tree',
147
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
148
    'unbind',
Y
Yu Yang 已提交
149 150
]

151
OP_NAMEMAPPING = {
152 153 154 155 156 157 158 159
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
160
    'elementwise_mod': 'remainder',
161 162
}

Y
Yu Yang 已提交
163

164 165
def _get_reduce_dim(dim, input):
    """
166
    Internal function for reduce_sum, reduce_mean, reduce_prod.
167 168 169 170 171 172 173 174 175
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
176 177 178 179
                "The type of dim must be int, list, tuple or range, but received {}".format(
                    type(axis)
                )
            )
180 181 182 183 184 185 186 187 188 189
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


190
@dygraph_only
191 192 193
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
194 195 196 197
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
198
        op = getattr(_legacy_C_ops, op_name)
199 200 201
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
202 203
            op = getattr(
                _C_ops,
204 205
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
206 207 208
            out = op(x, y)

        if _in_legacy_dygraph():
209
            op = getattr(_legacy_C_ops, op_name)
210
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
211 212 213 214 215 216 217 218 219 220 221 222 223 224
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
225
    r"""
226 227
    :api_attr: Static Graph

228
    **Fully Connected Layer**
Y
Yu Yang 已提交
229

230 231 232
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
233
    which represents a fully connected weight matrix from each input unit to
234 235 236 237
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
238
    is not None, a bias variable will be created and added to the output.
239
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
240

241
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
242

243 244 245 246
    .. math::

        Out = Act({XW + b})

247
    When the input is a list of Tensor(or LoDTensor):
248 249 250

    .. math::

251
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
252 253 254

    In the above equation:

255 256 257
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
258
    * :math:`b`: The bias parameter created by this layer (if needed).
259
    * :math:`Act`: The activation function.
260
    * :math:`Out`: The output Tensor.
261 262 263

    .. code-block:: text

264 265 266 267 268 269 270 271 272 273 274 275 276 277
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
278 279 280 281 282 283 284 285 286 287 288 289 290
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
291
    Args:
292 293 294
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
295
        size(int): The number of output units in this layer, which also means the feature size of output
296 297
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
298
            two dimensions. If this happens, the multidimensional tensor will first be flattened
299 300
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
301
            dimensions will be flatten to form the first dimension of the final matrix (height of
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
317 318

    Raises:
319
        ValueError: If dimensions of the input Tensor is less than 2.
320 321 322 323

    Examples:
        .. code-block:: python

324
          import paddle.fluid as fluid
325 326
          import paddle
          paddle.enable_static()
327
          # when input is single tensor
328
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
329
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
330 331

          # when input are multiple tensors
332 333
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
334
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
335
    """
C
caoying03 已提交
336
    helper = LayerHelper("fc", **locals())
337
    check_type(input, 'input', (list, tuple, Variable), 'fc')
338 339
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
340
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
341
    dtype = helper.input_dtype()
342 343 344
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
345
    mul_results = []
346 347
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
348 349
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
350 351 352
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
353

354 355 356
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
357
        tmp = helper.create_variable_for_type_inference(dtype)
358 359 360 361 362 363
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
364 365 366 367
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
368
    else:
X
Xin Pan 已提交
369
        pre_bias = helper.create_variable_for_type_inference(dtype)
370 371 372 373 374 375
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
376 377 378 379
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
380 381


T
tangwei12 已提交
382
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
383 384 385 386 387 388 389 390 391
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
392
    r"""
393
    :api_attr: Static Graph
394

395 396 397 398 399 400 401 402 403 404 405 406
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

407
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
425

426 427 428 429
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
430

431
        Case 2:
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
447 448

    Args:
449 450 451 452 453 454
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
455
            affects the performance of the backwards gradient update. It is recommended to set
456
            True because sparse update is faster. But some optimizer does not support sparse update,
457
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
458 459 460 461 462
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
463
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
464 465 466 467 468 469
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
470
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
471
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
472
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
473 474 475
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
476

477
    Returns:
478
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
479

480 481
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
482

B
bdzhuxiaoning 已提交
483
          import paddle.fluid as fluid
484
          import numpy as np
485 486
          import paddle
          paddle.enable_static()
487

488 489
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
490
          # example 1
491 492 493 494 495 496 497 498 499
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
500
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
501 502 503
    """

    helper = LayerHelper('embedding', **locals())
504 505 506 507 508 509 510 511 512
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
513 514 515 516 517 518 519 520 521

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

522 523 524
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
525
    tmp = helper.create_variable_for_type_inference(dtype)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
544 545 546
    return tmp


547 548 549 550 551 552 553 554 555 556 557
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
558
    r"""
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
604
        'is_distributed': True,
605 606
    }
    # this is only for compatible with embedding op
607 608 609 610 611 612 613 614 615
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
616 617 618 619 620
    if len(outs) == 1:
        return outs[0]
    return outs


621 622 623 624 625 626 627 628 629 630 631
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
632
    r"""
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
678
        'is_distributed': True,
679 680
    }
    # this is only for compatible with embedding op
681 682 683 684 685 686 687 688 689
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
690
    if len(outs) == 1:
Y
yaoxuefeng 已提交
691 692 693 694
        return outs[0]
    return outs


695 696 697
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
731 732 733
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
734 735 736 737 738 739
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
740 741 742 743 744 745 746 747 748 749 750 751 752
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
753
    if len(outs) == 1:
754 755 756 757
        return outs[0]
    return outs


758 759 760
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
761
    r"""
H
hutuxian 已提交
762 763 764 765 766 767 768
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
769
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
770
            contains the IDs information.
771
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
772
            each embedding vector respectively.
773
        dtype(str): The dtype refers to the data type of output tensor. Only supports
H
hutuxian 已提交
774 775 776 777 778 779 780 781 782 783 784
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
785
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
786 787 788 789
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
790 791 792
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
793 794 795 796 797 798
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
799 800 801 802 803 804 805 806 807 808 809 810 811
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
812 813 814 815 816
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
817
@templatedoc()
818
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
819
    """
820 821
    :api_attr: Static Graph

Y
yuyang18 已提交
822 823 824 825 826
    Linear Chain CRF.

    ${comment}

    Args:
827
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
828
        label(${label_type}): ${label_comment}
829
        Length(${length_type}): ${length_comment}
830
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
831 832

    Returns:
D
dzhwinter 已提交
833 834
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
835
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
836

J
JesseyXujin 已提交
837 838 839
    Examples:
        .. code-block:: python

840 841
            import paddle.fluid as fluid
            import numpy as np
842 843
            import paddle
            paddle.enable_static()
844 845 846 847 848

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
849 850
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
851 852 853 854 855 856
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
857
                    learning_rate=0.01))
858 859 860
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
861
            exe.run(startup_program)
862 863 864 865 866
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
867
            print(loss)
868 869 870 871 872

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
873 874 875
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
876 877 878 879 880 881
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
882
                     name='crfw',
883 884 885 886 887 888
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
889

890 891 892
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
893
            ll=np.array([[3],[3],[4],[2]])
894 895
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
896
            print(loss2)
897 898 899 900 901
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

902 903 904
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
905

Y
yuyang18 已提交
906
    """
907 908 909
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
910
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
911
    helper = LayerHelper('linear_chain_crf', **locals())
912
    size = input.shape[2] if length else input.shape[1]
913 914 915 916 917
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
918
    alpha = helper.create_variable_for_type_inference(
919 920
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
921
    emission_exps = helper.create_variable_for_type_inference(
922 923
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
924
    transition_exps = helper.create_variable_for_type_inference(
925 926
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
927
    log_likelihood = helper.create_variable_for_type_inference(
928 929
        dtype=helper.input_dtype()
    )
930 931 932
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
933
        "Label": [label],
934 935
    }
    if length:
936
        this_inputs['Length'] = [length]
937 938 939 940 941 942 943 944 945 946
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
947 948 949 950

    return log_likelihood


W
wopeizl 已提交
951
@templatedoc()
952
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
953
    """
954
    :api_attr: Static Graph
955

W
wopeizl 已提交
956
    ${comment}
Y
yi.wu 已提交
957

W
wopeizl 已提交
958
    Args:
959
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
960

961 962
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
963
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
964

Y
Yibing Liu 已提交
965
        label(${label_type}, optional): ${label_comment}
966

Y
Yibing Liu 已提交
967
        length(${length_type}, optional): ${length_comment}
968

W
wopeizl 已提交
969
    Returns:
970
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
971

W
wopeizl 已提交
972 973
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
974

975 976
           import paddle
           paddle.enable_static()
977 978 979

           # LoDTensor-based example
           num_labels = 10
980 981 982
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
983

984 985 986 987
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
988 989 990

           # Common tensor example
           num_labels, max_len = 10, 20
991 992 993 994
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
995
                                      num_flatten_dims=2)
996

997 998 999 1000
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
1001
    """
1002 1003 1004
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
1005 1006 1007
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
1008 1009
        dtype=core.VarDesc.VarType.INT64
    )
1010 1011 1012
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
1013 1014 1015 1016 1017
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
1018

W
wopeizl 已提交
1019
    return viterbi_path
Y
Yu Yang 已提交
1020 1021


Y
yi.wu 已提交
1022
@templatedoc()
F
fengjiayi 已提交
1023
def cos_sim(X, Y):
Y
Yu Yang 已提交
1024
    """
Y
yi.wu 已提交
1025 1026 1027
    ${comment}

    Args:
N
Noel 已提交
1028 1029
        X (Tensor): ${x_comment}.
        Y (Tensor): ${y_comment}.
F
fengjiayi 已提交
1030

Y
yi.wu 已提交
1031
    Returns:
N
Noel 已提交
1032
        A Tensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
1033 1034 1035 1036

    Examples:
        .. code-block:: python

N
Noel 已提交
1037 1038 1039 1040 1041 1042 1043
            import paddle

            x = paddle.rand(shape=[3, 7], dtype='float32')
            y = paddle.rand(shape=[1, 7], dtype='float32')
            out = paddle.fluid.layers.cos_sim(x, y)
            print(out)

Y
Yu Yang 已提交
1044
    """
1045 1046
    check_variable_and_dtype(X, 'X', ['float32'], 'cos_sim')
    check_variable_and_dtype(Y, 'Y', ['float32'], 'cos_sim')
F
fengjiayi 已提交
1047
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1048 1049 1050
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
1051 1052 1053 1054 1055
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X], 'Y': [Y]},
        outputs={'Out': [out], 'XNorm': [xnorm], 'YNorm': [ynorm]},
    )
Y
Yu Yang 已提交
1056 1057 1058
    return out


1059
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
1060 1061 1062 1063 1064 1065 1066 1067
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
1068
    """
1069

1070 1071 1072 1073
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1074
    training. The dropout operator randomly sets (according to the given dropout
1075 1076 1077
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1078 1079
    dropout op can be removed from the program to make the program more efficient.

1080
    Args:
L
lvmengsi 已提交
1081
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1082
        dropout_prob (float): Probability of setting units to zero.
1083
        is_test (bool): A flag indicating whether it is in test phrase or not.
1084
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1085 1086 1087
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1088
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1089 1090
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1091 1092
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1093
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1094 1095

                                           - train: out = input * mask
C
ceci3 已提交
1096
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1097 1098 1099

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1100
                                        2. upscale_in_train, upscale the outcome at training time
1101

H
haowang101779990 已提交
1102 1103
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1104

H
haowang101779990 已提交
1105 1106
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1107

M
minqiyang 已提交
1108

1109
    Returns:
L
lvmengsi 已提交
1110
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1111 1112

    Examples:
1113

1114 1115
        .. code-block:: python

1116
            import paddle
1117
            import paddle.fluid as fluid
1118

1119
            paddle.enable_static()
L
lvmengsi 已提交
1120
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1121
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1122
    """
1123 1124
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1125 1126
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1127
    # fast return for p == 0
1128
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1129
        return x
1130

J
Jiabin Yang 已提交
1131
    if _non_static_mode():
1132 1133 1134
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1135
            seed = default_main_program().random_seed
1136 1137
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1151
        return out
1152

W
wanghuancoder 已提交
1153 1154 1155
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1156 1157
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1158 1159 1160 1161
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1171
    helper = LayerHelper('dropout', **locals())
1172 1173 1174
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1175

X
Xin Pan 已提交
1176 1177
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1178 1179
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1180

1181
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1182

1183 1184 1185 1186 1187 1188
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1189 1190 1191
    return out


1192
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
1193
def softmax(input, use_cudnn=True, name=None, axis=-1):
1194
    r"""
1195
    This operator implements the softmax layer. The calculation process is as follows:
1196

1197
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1198

1199 1200 1201 1202 1203 1204 1205
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1206

1207
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
1208
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1209

1210 1211 1212 1213 1214
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1215

1216
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1217

1218
    .. math::
1219

N
Noel 已提交
1220
        Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}
1221

1222
    Example:
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
1267
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
1268

Q
qiaolongfei 已提交
1269
    Args:
N
Noel 已提交
1270
        input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64.
1271
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
G
GaoWei8 已提交
1272
            library is installed. To improve performance, set use_cudnn to True by default.
1273
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1274
            will be named automatically. Default: None.
1275
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1276
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
N
Noel 已提交
1277
            input tensor. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1278 1279

    Returns:
N
Noel 已提交
1280
        Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1281 1282 1283 1284 1285

    Examples:

        .. code-block:: python

N
Noel 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
                                [3.0, 4.0, 5.0, 6.0],
                                [7.0, 8.0, 8.0, 9.0]],
                                [[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
            y = F.softmax(x, axis=1)
            print(y)
            # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
            #   [0.01786798, 0.01786798, 0.04661262, 0.04661262],
            #   [0.97555870, 0.97555870, 0.93623954, 0.93623954]],
            #  [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
            #   [0.26762316, 0.26762316, 0.26762316, 0.26762316],
            #   [0.72747517, 0.72747517, 0.72747517, 0.72747517]]]
Q
qiaolongfei 已提交
1303 1304

    """
1305

H
hong 已提交
1306
    if in_dygraph_mode():
1307
        return _C_ops.softmax(input, axis)
H
hong 已提交
1308

J
Jiabin Yang 已提交
1309
    if _non_static_mode():
1310 1311 1312
        return _legacy_C_ops.softmax(
            input, 'axis', axis, 'use_cudnn', use_cudnn
        )
1313 1314 1315

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1316

1317
    helper = LayerHelper('softmax', **locals())
1318 1319 1320
    check_variable_and_dtype(
        input, 'input/x', ['float16', 'float32', 'float64'], 'softmax'
    )
1321

1322
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1323
    softmax_out = helper.create_variable_for_type_inference(dtype)
1324 1325 1326 1327 1328 1329
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs=attrs,
    )
1330 1331 1332
    return softmax_out


1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1348
    r"""
1349 1350
    :api_attr: Static Graph

C
chengduoZH 已提交
1351
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1352
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1353
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1354
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1355 1356 1357 1358 1359 1360
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1361
    for more details.
1362 1363 1364
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1365

1366
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1367

C
chengduoZH 已提交
1368 1369
    .. math::

C
refine  
chengduoZH 已提交
1370
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1371

T
tensor-tang 已提交
1372
    Where:
C
chengduoZH 已提交
1373

L
liym27 已提交
1374
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1375 1376 1377 1378
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1379
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1380 1381 1382

    Example:

1383 1384
        - Input:

W
weixing02 已提交
1385
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1386

W
weixing02 已提交
1387
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1388

1389
        - Output:
T
tensor-tang 已提交
1390

W
weixing02 已提交
1391
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1392

C
chengduoZH 已提交
1393
        Where
1394 1395

        .. math::
C
chengduoZH 已提交
1396

W
weixing02 已提交
1397 1398
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1399 1400

    Args:
1401
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1402
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1403
        num_filters(int): The number of filter. It is as same as the output
1404
            image channel.
1405 1406
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1407 1408
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1409 1410
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1411 1412
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1413
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1414 1415
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1416 1417
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1418
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1419 1420 1421
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1422
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1423 1424
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1425
            Default: dilation = 1.
1426 1427 1428 1429
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1430 1431 1432 1433 1434
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1435
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1436 1437 1438 1439 1440
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1441 1442
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1443 1444
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1445 1446
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1447
           None by default.
1448
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1449
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1450 1451
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1452 1453

    Returns:
1454 1455 1456
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1457
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1458

1459 1460 1461 1462 1463
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1464
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1465 1466 1467 1468 1469 1470 1471
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1472 1473 1474
    Examples:
        .. code-block:: python

1475 1476
          import paddle
          paddle.enable_static()
1477

1478 1479 1480
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1481 1482
    """

1483 1484 1485
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1486
    if len(input.shape) != 4:
1487 1488 1489 1490
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1491
    num_channels = input.shape[1]
L
liym27 已提交
1492
    if not isinstance(use_cudnn, bool):
1493 1494 1495 1496
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1497 1498 1499 1500

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1501 1502
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1503

1504
    channel_last = data_format == "NHWC"
L
liym27 已提交
1505 1506 1507 1508
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1509 1510
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1511
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1512

1513 1514 1515
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1516 1517
        raise ValueError(
            "the groups of input must be greater than 0, "
1518 1519
            "but received the groups of input is {}".format(groups)
        )
1520 1521 1522 1523 1524
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1525 1526
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1527 1528
        num_filter_channels = num_channels // groups

1529
    l_type = 'conv2d'
1530 1531 1532 1533 1534
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1535
        l_type = 'depthwise_conv2d'
1536

1537 1538 1539 1540 1541
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1542 1543
        l_type = 'depthwise_conv2d'

1544 1545
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1546
        if num_channels == groups and num_channels == num_filters:
1547 1548 1549 1550
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1551 1552 1553
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1554 1555
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1556
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1557

L
liym27 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1570 1571
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1572 1573 1574 1575 1576 1577
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1578 1579
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1580 1581 1582
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1583 1584 1585
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1596 1597 1598
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1599 1600
        if padding == "VALID":
            padding_algorithm = "VALID"
1601
            padding = [0, 0]
L
liym27 已提交
1602 1603
        elif padding == "SAME":
            padding_algorithm = "SAME"
1604
            padding = [0, 0]
L
liym27 已提交
1605 1606

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1607

M
minqiyang 已提交
1608
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1609 1610

    def _get_default_param_initializer():
C
chengduo 已提交
1611
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1612 1613 1614 1615
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1616 1617 1618
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1619 1620 1621 1622 1623 1624
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1625 1626
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1627

X
Xin Pan 已提交
1628
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1629

1630 1631 1632 1633 1634 1635
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1636 1637
        use_cudnn = False

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1657

1658 1659 1660 1661
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1662 1663 1664 1665

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1666
@templatedoc()
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1680
    """
1681

F
fengjiayi 已提交
1682
    ${comment}
1683 1684

    Args:
K
Kaipeng Deng 已提交
1685 1686 1687 1688 1689
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1690
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1691 1692
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1693
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1694 1695 1696
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1697 1698 1699 1700 1701 1702 1703
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1704
            Otherwise, the pool padding size will be a square of an int.
1705 1706 1707
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1708 1709 1710
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1711
        exclusive (bool): Whether to exclude padding points in average pooling
1712
                          mode, default is `true`.
1713
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1714 1715
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1716

1717
    Returns:
K
Kaipeng Deng 已提交
1718
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1719 1720

    Raises:
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1733 1734 1735 1736 1737

    Examples:

        .. code-block:: python

1738
          import paddle.fluid as fluid
1739 1740 1741
          import paddle

          paddle.enable_static()
1742

K
Kaipeng Deng 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1786 1787 1788
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1789
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1790 1791
            str(pool_type),
        )
C
chengduoZH 已提交
1792

C
chengduoZH 已提交
1793 1794
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1795
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1796 1797
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1798 1799

    if not isinstance(use_cudnn, bool):
1800 1801 1802 1803
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1804 1805 1806 1807

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1808 1809
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1810

C
chengduoZH 已提交
1811 1812 1813
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1825 1826
                        "is not supported." % str(padding)
                    )
1827 1828 1829 1830 1831 1832
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1833 1834
                        "is not supported." % str(padding)
                    )
1835 1836 1837
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1838

1839 1840
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1852 1853
                % str(pool_padding)
            )
1854 1855
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1856
            pool_padding = [0, 0]
1857 1858 1859
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1860 1861
                    "Received ceil_mode: True."
                )
1862 1863
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1864
            pool_padding = [0, 0]
1865 1866

    pool_padding = update_padding(pool_padding, data_format)
1867
    if in_dygraph_mode():
1868
        input = input._use_cudnn(use_cudnn)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1882 1883
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1884
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1885
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1905 1906 1907 1908

    return pool_out


D
dengkaipeng 已提交
1909
@templatedoc()
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
def pool3d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCDHW",
):
1923
    """
1924

1925
    ${comment}
1926 1927

    Args:
K
Kaipeng Deng 已提交
1928 1929
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1930 1931 1932
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1933
                          of the feature.
1934 1935
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
D
dengkaipeng 已提交
1936 1937 1938
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1950 1951 1952
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1953 1954 1955
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1956
        exclusive (bool): Whether to exclude padding points in average pooling
1957 1958 1959 1960
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1961

1962
    Returns:
K
Kaipeng Deng 已提交
1963
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1978 1979 1980 1981
    Examples:

        .. code-block:: python

1982
          import paddle.fluid as fluid
1983 1984 1985
          import paddle

          paddle.enable_static()
1986

K
Kaipeng Deng 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2035 2036 2037
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2038
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
2039 2040
            str(pool_type),
        )
C
chengduoZH 已提交
2041

C
chengduoZH 已提交
2042 2043
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2044
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
2045 2046 2047
            "and be a valid value. Received Attr(pool_size): %s."
            % str(pool_size)
        )
2048 2049

    if not isinstance(use_cudnn, bool):
2050 2051 2052 2053
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
2054 2055 2056 2057

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
2058 2059
            "Attr(data_format): %s" % str(data_format)
        )
C
chengduoZH 已提交
2060

2061 2062
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
2075 2076
                        "is not supported." % str(padding)
                    )
2077 2078 2079 2080 2081 2082
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
2083 2084
                        "is not supported." % str(padding)
                    )
2085 2086 2087
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2088 2089
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2090 2091 2092

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2093 2094
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
2106 2107
                % str(pool_padding)
            )
2108 2109
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2110
            pool_padding = [0, 0, 0]
2111 2112 2113
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
2114 2115
                    "Received ceil_mode: True."
                )
2116 2117
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2118
            pool_padding = [0, 0, 0]
2119 2120 2121 2122 2123

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2124
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2125
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
2145 2146 2147 2148

    return pool_out


2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
2165
    r"""
2166 2167
    :api_attr: Static Graph

Q
qiaolongfei 已提交
2168 2169
    **Batch Normalization Layer**

L
lvmengsi 已提交
2170
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2171
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2172

Q
qiaolongfei 已提交
2173
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2174

Q
qiaolongfei 已提交
2175 2176
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2177 2178 2179
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2192

L
lvmengsi 已提交
2193
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
2194
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
2195

2196

L
lvmengsi 已提交
2197
    moving_mean is global mean and moving_var is global variance.
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2211
    Note:
2212
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
2213
        sync_batch_norm automatically.
2214
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2215

2216
    Args:
2217
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
2218
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2219
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2220 2221
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2222 2223
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
2224
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2225 2226 2227 2228 2229
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2230 2231
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2232
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
2233
	     If the Initializer of the param_attr is not set, the parameter is initialized
2234
	     with Xavier. Default: None.
C
chengduo 已提交
2235 2236
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2237 2238
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
2239
	     Default: None.
2240
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
2241 2242 2243
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2244
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
2245 2246 2247 2248
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
2249
            will save global mean with the string.
L
lvmengsi 已提交
2250
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2251
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
2252
            will save global variance with the string.
2253 2254
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2255 2256 2257 2258 2259
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2260
    Returns:
2261
        A Tensor which is the result after applying batch normalization on the input,
2262
        has same shape and data type with input.
Q
qiaolongfei 已提交
2263 2264 2265 2266 2267

    Examples:

        .. code-block:: python

2268
            import paddle
2269

2270
            paddle.enable_static()
2271 2272 2273 2274 2275 2276 2277
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
2278
    """
2279 2280 2281
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2282 2283
    helper = LayerHelper('batch_norm', **locals())

2284 2285 2286
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
2287
    dtype = helper.input_dtype()
2288

W
Wu Yi 已提交
2289 2290 2291 2292
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2325 2326
    mean.stop_gradient = True

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2337
    variance.stop_gradient = True
Y
Yu Yang 已提交
2338 2339 2340 2341

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
2342
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
2343
    variance_out = variance
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2372
        else:
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2387
        if inputs_has_MomemtumTensor:
2388
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
2399
        else:
2400
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
2411

2412 2413 2414
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
2415

2416 2417 2418
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2419
    saved_variance = helper.create_variable_for_type_inference(
2420 2421
        dtype=dtype, stop_gradient=True
    )
2422
    reserve_space = None
2423
    if not is_test:
2424
        reserve_space = helper.create_variable_for_type_inference(
2425 2426
            dtype=helper.input_dtype(), stop_gradient=True
        )
2427

2428 2429 2430
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
2431

2432 2433 2434 2435 2436
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
2437 2438
        "Variance": variance,
        "MeanOut": mean_out,
2439
        "VarianceOut": variance_out,
2440 2441 2442 2443 2444 2445 2446
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
2447
        "use_global_stats": use_global_stats,
2448 2449 2450 2451 2452
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2453 2454 2455 2456 2457 2458

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2459
        "SavedVariance": saved_variance,
2460 2461 2462 2463
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2464 2465 2466
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2467 2468 2469 2470

    return helper.append_activation(batch_norm_out)


2471 2472 2473
def instance_norm(
    input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None
):
2474
    r"""
2475 2476
    :api_attr: Static Graph

L
lvmengsi 已提交
2477 2478
    **Instance Normalization Layer**

L
lvmengsi 已提交
2479
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2480 2481 2482 2483
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

2484
    Refer to `Instance Normalization: The Missing Ingredient for
L
lvmengsi 已提交
2485 2486 2487 2488 2489 2490 2491 2492
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2493
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2494
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2495
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2496 2497 2498 2499
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2500 2501
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2502 2503

    Args:
C
ceci3 已提交
2504
        input(Tensor): The rank of input tensor can be 2, 3, 4, 5.
L
lvmengsi 已提交
2505
            The data type is float32 or float64.
L
lvmengsi 已提交
2506 2507
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
2508
        param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale`
L
lvmengsi 已提交
2509 2510
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
2511
	     If the Initializer of the param_attr is not set, the parameter is initialized
C
ceci3 已提交
2512 2513 2514
	     with Xavier. If the param_attr is set to False, instance_norm will not create param_attr.
             Default: None.
        bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm.
L
lvmengsi 已提交
2515
             If it is set to None or one attribute of ParamAttr, instance_norm
2516 2517
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
C
ceci3 已提交
2518
             If the bias_attr is set to False, instance_norm will not create bias_attr.
L
lvmengsi 已提交
2519 2520 2521 2522 2523
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
C
ceci3 已提交
2524
        A Tensor which is the result after applying instance normalization on the input,
2525
        has same shape and data type with input.
L
lvmengsi 已提交
2526 2527 2528 2529 2530

    Examples:

        .. code-block:: python

2531 2532
            import paddle
            paddle.enable_static()
C
ceci3 已提交
2533 2534 2535
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x, size=200)
            hidden2 = paddle.static.nn.instance_norm(hidden1)
L
lvmengsi 已提交
2536
    """
2537 2538 2539
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'instance_norm'
    )
C
ceci3 已提交
2540
    if param_attr is False:
2541 2542
        assert (
            bias_attr is False
2543
        ), "param_attr and bias_attr must be set to False at the same time in instance_norm"
C
ceci3 已提交
2544

L
lvmengsi 已提交
2545 2546 2547 2548 2549 2550 2551 2552
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
C
ceci3 已提交
2553 2554
    if len(input.shape) < 2 or len(input.shape) > 5:
        raise ValueError(
2555 2556 2557 2558
            'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.format(
                len(input.shape), input_shape
            )
        )
L
lvmengsi 已提交
2559 2560 2561 2562
    channel_num = input_shape[1]

    param_shape = [channel_num]

2563
    if param_attr != False and bias_attr != False:
C
ceci3 已提交
2564
        # create parameter
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=param_shape,
            dtype=dtype,
            is_bias=True,
            default_initializer=Constant(0.0),
        )
L
lvmengsi 已提交
2578 2579

    # create output
2580 2581 2582
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
L
lvmengsi 已提交
2583
    saved_variance = helper.create_variable_for_type_inference(
2584 2585
        dtype=dtype, stop_gradient=True
    )
L
lvmengsi 已提交
2586 2587 2588

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

C
ceci3 已提交
2589
    inputs = {"X": input}
2590
    if param_attr != False and bias_attr != False:
C
ceci3 已提交
2591 2592 2593
        inputs["Scale"] = scale
        inputs["Bias"] = bias

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    helper.append_op(
        type="instance_norm",
        inputs=inputs,
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance,
        },
        attrs={
            "epsilon": epsilon,
        },
    )
L
lvmengsi 已提交
2606 2607 2608 2609

    return instance_norm_out


2610
@static_only
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
def data_norm(
    input,
    act=None,
    epsilon=1e-05,
    param_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    slot_dim=-1,
    sync_stats=False,
    summary_decay_rate=0.9999999,
    enable_scale_and_shift=False,
):
2627
    r"""
2628 2629
    :api_attr: Static Graph

H
heqiaozhi 已提交
2630 2631
    **Data Normalization Layer**

2632
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
Y
yaoxuefeng 已提交
2652
        input(Tensor): The input Tensor.
H
heqiaozhi 已提交
2653 2654 2655
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2656
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
2657 2658 2659
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2660 2661 2662 2663 2664
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2665 2666
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2667
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we
2668 2669
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
2670 2671
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate
2672 2673
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2674 2675 2676
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
2677
        enable_scale_and_shift(bool, Default False): do scale&shift after normalization.
H
heqiaozhi 已提交
2678 2679

    Returns:
Y
yaoxuefeng 已提交
2680
        Tensor: A tensor which is the result after applying data normalization on the input.
H
heqiaozhi 已提交
2681 2682 2683 2684

    Examples:

        .. code-block:: python
2685

Y
yaoxuefeng 已提交
2686
            import paddle
2687
            paddle.enable_static()
H
heqiaozhi 已提交
2688

Y
yaoxuefeng 已提交
2689 2690
            x = paddle.randn(shape=[32,100])
            hidden2 = paddle.static.nn.data_norm(input=x)
H
heqiaozhi 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4
2709 2710
    scale_w_default = 1.0
    bias_default = 0.0
H
heqiaozhi 已提交
2711 2712 2713 2714 2715

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)
2716 2717 2718 2719 2720
    if enable_scale_and_shift:
        scale_w_default = param_attr.get("scale_w", 1.0)
        bias_default = param_attr.get("bias", 0.0)

    # create scale and shift(bias) when enable_scale_and_shift is True
2721
    if name is None:
2722 2723
        name = "dn"
    if enable_scale_and_shift:
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
        scale_w = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.scale_w',
                initializer=Constant(value=float(scale_w_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
        bias = helper.create_parameter(
            attr=ParamAttr(
                name=name + '.bias',
                initializer=Constant(value=float(bias_default)),
                trainable=True,
            ),
            shape=param_shape,
            dtype=input.dtype,
        )
2742
    # create parameter
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True,
        ),
        shape=param_shape,
        dtype=input.dtype,
    )
H
heqiaozhi 已提交
2772 2773 2774 2775 2776 2777

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

2778 2779 2780 2781
    inputs = {
        "X": input,
        "BatchSize": batch_size,
        "BatchSum": batch_sum,
2782
        "BatchSquareSum": batch_square_sum,
2783
    }
2784 2785
    attrs = {
        "epsilon": epsilon,
X
XiangGao 已提交
2786
        "data_layout": data_layout,
2787 2788 2789 2790 2791 2792 2793
        "sync_stats": sync_stats,
        "summary_decay_rate": summary_decay_rate,
    }
    if slot_dim > 0:
        attrs["slot_dim"] = slot_dim
    if enable_scale_and_shift:
        attrs["enable_scale_and_shift"] = enable_scale_and_shift
2794 2795 2796
    if enable_scale_and_shift:
        inputs["scale_w"] = scale_w
        inputs["bias"] = bias
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    helper.append_op(
        type="data_norm",
        inputs=inputs,
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum,
        },
        attrs=attrs,
    )
H
heqiaozhi 已提交
2810 2811 2812 2813

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2814
@templatedoc()
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2826
    r"""
2827 2828
    :api_attr: Static Graph

2829 2830 2831 2832
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2833 2834 2835

    The formula is as follows:

Y
yuyang18 已提交
2836
    ..  math::
G
guosheng 已提交
2837

2838
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2839

2840
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2841

2842
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2843

2844 2845 2846 2847 2848
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2849

G
guosheng 已提交
2850
    Args:
2851
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2852 2853 2854 2855 2856
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2857
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2858 2859 2860 2861
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2862 2863
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2864
            a default :code:`ParamAttr` would be added as scale. The
2865 2866
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2867 2868
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2869
            a default :code:`ParamAttr` would be added as bias. The
2870
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2871
        act(str, optional): Activation to be applied to the output of layer normalization.
2872 2873
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2874 2875

    Returns:
2876
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2877 2878 2879

    Examples:

2880 2881
        .. code-block:: python

2882 2883
            import paddle
            paddle.enable_static()
2884 2885 2886
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2887
    """
2888 2889 2890
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2891
    helper = LayerHelper('layer_norm', **locals())
2892 2893 2894
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2895 2896 2897 2898 2899 2900 2901
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2902 2903 2904 2905 2906 2907 2908 2909 2910
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2911
        inputs['Scale'] = scale
2912 2913
    else:
        if param_attr:
T
tianshuo78520a 已提交
2914
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2915
    if shift:
2916 2917 2918 2919 2920 2921
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2922
        inputs['Bias'] = bias
2923 2924
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2925
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2926 2927

    # create output
2928 2929 2930 2931 2932 2933
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2934
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2946 2947 2948 2949

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2950
@templatedoc()
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
def group_norm(
    input,
    groups,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    data_layout='NCHW',
    name=None,
):
D
Dun 已提交
2961
    """
2962 2963
    :api_attr: Static Graph

D
Dun 已提交
2964 2965
    **Group Normalization Layer**

H
haowang101779990 已提交
2966
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
2967

2968
    Parameters:
2969
        input(Tensor): Tensor with dimension greater than 1, the data type is float32 or float64.
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
2982
        act(str, optional): Activation to be applied to the output of group normalization.
2983
        data_layout(str, optional): Specify the data format of the input, and the data format of the output
2984 2985
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
2986
            `[batch_size, input_channels, *]`.
2987 2988
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
2989 2990

    Returns:
2991
        Tensor: A Tensor has same data type and data format with `input`.
D
Dun 已提交
2992 2993

    Examples:
2994
       .. code-block:: python
D
Dun 已提交
2995

2996 2997
            import paddle
            paddle.enable_static()
2998

C
Chen Long 已提交
2999 3000 3001
            data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32')
            x = paddle.static.nn.group_norm(input=data, groups=4)
            print(x.shape) # [2, 8, 32, 32]
D
Dun 已提交
3002 3003 3004
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()
3005 3006 3007
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'group_norm'
    )
D
Dun 已提交
3008 3009 3010
    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3011 3012 3013 3014
    if len(input_shape) < 2:
        raise ValueError(
            f"The dimensions of Op(fluid.layers.group_norm)'s input should be more than 1. But received {len(input_shape)}"
        )
3015 3016 3017
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
3018 3019 3020
            + data_layout
            + " but only NCHW or NHWC supported."
        )
3021 3022
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3023
    if param_attr:
3024 3025 3026 3027 3028 3029
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
D
Dun 已提交
3030 3031
        inputs['Scale'] = scale
    if bias_attr:
3032 3033 3034
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
D
Dun 已提交
3035 3036 3037
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3038 3039
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3040 3041
    group_norm_out = helper.create_variable(dtype=dtype)

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout,
        },
    )
D
dengkaipeng 已提交
3056 3057 3058 3059 3060

    return helper.append_activation(group_norm_out)


@templatedoc()
3061
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
3062
    r"""
3063 3064
    :api_attr: Static Graph

D
dengkaipeng 已提交
3065 3066
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3067
    This operation calculates the spectral normalization value of weight parameters of
3068
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3069 3070
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3071

D
dengkaipeng 已提交
3072 3073 3074
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3075
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3076 3077

    Step 2:
T
tianshuo78520a 已提交
3078
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3079 3080
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3081

3082
    .. math::
D
dengkaipeng 已提交
3083 3084 3085 3086 3087 3088

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3089
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3090 3091 3092 3093

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3094

D
dengkaipeng 已提交
3095
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3096

3097

D
dengkaipeng 已提交
3098 3099 3100
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
3101
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
3102 3103 3104
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3105 3106 3107
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3108 3109

    Returns:
C
Chen Long 已提交
3110
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3111
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3112 3113

    Examples:
K
Kaipeng Deng 已提交
3114
       .. code-block:: python
D
dengkaipeng 已提交
3115

3116
            import paddle
K
Kaipeng Deng 已提交
3117

3118
            paddle.enable_static()
C
Chen Long 已提交
3119
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
3120
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
3121
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
3122 3123
    """
    helper = LayerHelper('spectral_norm', **locals())
3124 3125 3126
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
3127 3128 3129
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
3130
    dtype = weight.dtype
D
dengkaipeng 已提交
3131 3132

    # create intput and parameters
3133
    input_shape = weight.shape
3134
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
3135 3136 3137 3138 3139
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
3140 3141 3142
    h = input_shape[dim]
    w = np.prod(input_shape) // h

3143 3144 3145 3146 3147 3148
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
3149
    u.stop_gradient = True
3150 3151 3152 3153 3154 3155
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
3156
    v.stop_gradient = True
D
dengkaipeng 已提交
3157

3158 3159 3160 3161 3162 3163 3164
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
3165
    # create output
3166
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
3180

3181
    return out
D
Dun 已提交
3182 3183


C
caoying03 已提交
3184
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3185
    """
3186

Y
yangyaming 已提交
3187
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3188 3189

    Args:
3190 3191 3192
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3193 3194
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3195 3196
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3197
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3198
            output Tensor. The result tensor will have one fewer dimension
3199 3200 3201 3202
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3203 3204

    Returns:
3205 3206
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3207

3208 3209
    Raises:
        TypeError, if out data type is different with the input data type.
3210

G
guosheng 已提交
3211 3212 3213
    Examples:
        .. code-block:: python

3214
            import paddle.fluid as fluid
3215 3216
            import paddle
            paddle.enable_static()
G
guosheng 已提交
3217 3218 3219
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3220
            # Each example is followed by the corresponding output tensor.
3221
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3222 3223 3224 3225
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3226

3227
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3228 3229
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3230
            # Each example is followed by the corresponding output tensor.
3231
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3232 3233
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3234

G
guosheng 已提交
3235
    """
3236 3237
    reduce_all, dim = _get_reduce_dim(dim, input)

3238
    if in_dygraph_mode():
3239
        return _C_ops.sum(input, dim, None, keep_dim)
3240
    elif _in_legacy_dygraph():
3241 3242 3243
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
3244
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
3245
    check_variable_and_dtype(
3246 3247 3248 3249 3250
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
3251
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3253 3254 3255 3256 3257 3258
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
3259
    return out
G
guosheng 已提交
3260 3261


3262
@deprecated(since="2.0.0", update_to="paddle.mean")
C
caoying03 已提交
3263
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3264
    """
Y
Yibing Liu 已提交
3265
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3266 3267

    Args:
3268 3269 3270
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3271 3272
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3273
            must be in the range :math:`[-rank(input), rank(input))`. If
3274
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3275
            :math:`rank(input) + dim[i]`.
3276
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3277
            output Tensor. The result tensor will have one fewer dimension
3278
            than the :attr:`input` unless :attr:`keep_dim` is true, default
3279 3280 3281
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
3282

G
guosheng 已提交
3283
    Returns:
3284 3285
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
3286

3287 3288
    Raises:
        TypeError, if out data type is different with the input data type.
3289

G
guosheng 已提交
3290 3291 3292
    Examples:
        .. code-block:: python

3293
            import paddle
3294
            import paddle.fluid as fluid
3295 3296
            paddle.enable_static()

G
guosheng 已提交
3297 3298 3299
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
3300
            # Each example is followed by the corresponding output tensor.
3301
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3302 3303 3304
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3305
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3306

3307
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3308 3309
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
3310
            # Each example is followed by the corresponding output tensor.
3311
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3312 3313
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3314
    """
3315

3316
    return paddle.mean(x=input, axis=dim, keepdim=keep_dim, name=name)
3317 3318


Z
zhoukunsheng 已提交
3319 3320
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
3321

3322
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
3323 3324

    Args:
3325
        input (Tensor): the input tensor, it's data type should be `bool`.
3326
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
3327 3328 3329
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
3330
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
3331 3332
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3333
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
3334
        name(str|None): A name for this layer(optional). If set None, the layer
3335
                       will be named automatically. The default value is None.
Z
zhoukunsheng 已提交
3336

3337
    Returns:
3338
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
3339 3340 3341

    Examples:
        .. code-block:: python
3342

3343
            import paddle
3344
            import paddle.fluid as fluid
3345 3346 3347
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
3348 3349 3350
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
3351 3352
            x = fluid.layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
3353

3354 3355 3356
            out = fluid.layers.reduce_all(x)  # False
            out = fluid.layers.reduce_all(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_all(x, dim=-1)  # [False, True]
3357 3358
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

3359
            out = fluid.layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
3360
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
3361 3362

    """
3363 3364
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3365 3366

    if in_dygraph_mode():
3367
        return _C_ops.all(input, dim if dim is not None else [], keep_dim)
3368

3369
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all')
Z
zhoukunsheng 已提交
3370 3371
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3372 3373 3374 3375 3376
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
3377
            'dim': dim if dim is not None and dim != [] else [0],
3378 3379
            'keep_dim': keep_dim,
            'reduce_all': True
3380
            if dim is None or dim == [] or len(dim) == len(input.shape)
3381 3382 3383
            else False,
        },
    )
Z
zhoukunsheng 已提交
3384 3385 3386 3387 3388
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
3389
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
3390 3391

    Args:
3392
        input (Tensor): the input tensor, it's data type should be `bool`.
3393 3394
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
3395 3396
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
3397
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None.
Z
zhoukunsheng 已提交
3398 3399
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3400
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
3401
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
3402

3403
    Returns:
3404
        Tensor, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
3405 3406 3407

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
3408

3409
            import paddle
3410
            import paddle.fluid as fluid
3411 3412 3413
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
3414 3415 3416
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
3417 3418
            x = fluid.layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = fluid.layers.cast(x, 'bool')
3419

3420 3421 3422
            out = fluid.layers.reduce_any(x)  # True
            out = fluid.layers.reduce_any(x, dim=0)  # [True, False]
            out = fluid.layers.reduce_any(x, dim=-1)  # [True, False]
3423 3424
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

3425
            out = fluid.layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
3426
                                     keep_dim=True)  # [[True], [False]]
3427
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
3428 3429

    """
3430
    check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any')
Z
zhoukunsheng 已提交
3431 3432 3433 3434
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3435 3436 3437 3438 3439
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
3440
            'dim': dim if dim is not None and dim != [] else [0],
3441 3442
            'keep_dim': keep_dim,
            'reduce_all': True
3443
            if dim is None or dim == [] or len(dim) == len(input.shape)
3444 3445 3446
            else False,
        },
    )
3447 3448 3449
    return out


C
caoying03 已提交
3450
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3451
    """
3452
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
3453 3454

    Args:
3455
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
3456
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
3457
            indicates the number of equal sized sub-Tensors that the ``input``
3458
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
3459 3460 3461 3462 3463
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
3464
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
3465
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3466 3467

    Returns:
3468
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
3469

3470
    Example:
G
guosheng 已提交
3471 3472
        .. code-block:: python

3473 3474
            import paddle.fluid as fluid

3475
            # input is a Tensor which shape is [3, 9, 5]
3476
            input = fluid.data(
3477 3478
                 name="input", shape=[3, 9, 5], dtype="float32")

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
3493

3494 3495 3496 3497 3498 3499
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
3500

G
guosheng 已提交
3501
    """
J
Jiabin Yang 已提交
3502
    if _non_static_mode():
3503 3504 3505
        num = None
        attrs = ()

S
songyouwei 已提交
3506 3507
        if isinstance(dim, Variable):
            dim = dim.numpy()
3508
            dim = dim.item(0)
W
wangzhen38 已提交
3509
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
3510
        dim = (len(input.shape) + dim) if dim < 0 else dim
3511
        attrs += ('axis', dim)
3512 3513 3514

        if isinstance(num_or_sections, int):
            num = num_or_sections
3515
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
3516
        elif isinstance(num_or_sections, (list, tuple)):
3517
            num = len(num_or_sections)
L
Leo Chen 已提交
3518
            if utils._contain_var(num_or_sections):
3519 3520
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
3521 3522 3523
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
3524
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
3525
            else:
3526
                attrs += ('sections', list(num_or_sections))
3527 3528
        else:
            raise TypeError(
3529
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
3530 3531
                "received %s." % (type(num_or_sections))
            )
3532
        if in_dygraph_mode():
C
Charles-hit 已提交
3533 3534 3535 3536
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
3537 3538
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
3539
            _legacy_C_ops.split(input, out, *attrs)
3540
            return out
L
Leo Chen 已提交
3541

3542
    check_variable_and_dtype(
3543 3544 3545 3546 3547
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
3548 3549 3550 3551
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
3552

G
guosheng 已提交
3553
    helper = LayerHelper('split', **locals())
3554

G
guosheng 已提交
3555
    input_shape = input.shape
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
3567
                assert isinstance(dim_size, int)
3568 3569 3570
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
3571 3572 3573
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
3574 3575
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
3576 3577 3578
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
3579 3580 3581 3582 3583 3584 3585
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
3586
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
3587 3588 3589
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
3590 3591
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
3592
        if isinstance(dim, int) and input_shape[dim] > 0:
3593 3594 3595 3596 3597 3598
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
3599 3600
        num = num_or_sections
    else:
3601
        if isinstance(dim, int) and input_shape[dim] > 0:
3602 3603 3604
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
3605
        num = len(num_or_sections)
3606
        attrs['sections'] = list(
3607 3608 3609 3610 3611
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
3612
        if utils._contain_var(num_or_sections):
3613
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
3614 3615
                num_or_sections
            )
3616

G
guosheng 已提交
3617
    outs = [
X
Xin Pan 已提交
3618
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3619 3620
        for i in range(num)
    ]
3621 3622 3623
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
3624
    return outs
C
caoying03 已提交
3625 3626 3627


def l2_normalize(x, axis, epsilon=1e-12, name=None):
3628
    r"""
3629

R
ruri 已提交
3630
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
3631 3632
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3633
    .. math::
3634 3635

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3636 3637 3638 3639 3640

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3641
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
3642
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3643 3644
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3645
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
3646
            the default value is 1e-12.
3647
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
3648

C
caoying03 已提交
3649
    Returns:
R
ruri 已提交
3650
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
3651 3652

    Examples:
3653

3654 3655
    .. code-block:: python
        :name: code-example1
3656

3657
        import paddle
3658

3659 3660
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
3661
        print(out)
R
ruri 已提交
3662

3663 3664 3665
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
3666

C
caoying03 已提交
3667
    """
F
fengjiayi 已提交
3668 3669
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
3670
    if _non_static_mode():
3671 3672 3673
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
3674 3675 3676
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
3677 3678 3679
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
3680

3681
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
3682 3683
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
3684 3685 3686 3687 3688 3689 3690 3691 3692
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
3693
    return out
3694 3695


S
ShenLiang 已提交
3696
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
3697
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3698
    """
Y
ying 已提交
3699 3700 3701 3702
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3703

C
chengduoZH 已提交
3704
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3705
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3706

3707 3708 3709 3710 3711
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3712
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3713

C
chengduoZH 已提交
3714
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3715
      performs in the following way.
G
guosheng 已提交
3716

3717
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3718
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3719
        last two dimensions and a batched matrix multiply supporting broadcast
3720
        applies on the two tensors.
G
guosheng 已提交
3721

Y
ying 已提交
3722 3723
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3724
    removed after matrix multiplication.
G
guosheng 已提交
3725 3726 3727

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3728 3729 3730
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3731
        alpha (float): The scale of output. Default 1.0.
3732
        name(str|None): A name for this layer(optional). If set None, the layer
3733
            will be named automatically.
G
guosheng 已提交
3734 3735

    Returns:
石晓伟 已提交
3736
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
3737

G
guosheng 已提交
3738 3739 3740
    Examples:
        .. code-block:: python

3741
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3742
            # x: [B, ..., M, K], y: [B, ..., K, N]
3743
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3744

3745
            # x: [B, M, K], y: [B, K, N]
3746
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3747

3748
            # x: [B, M, K], y: [K, N]
3749
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3750

3751
            # x: [M, K], y: [K, N]
3752
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3753 3754

            # x: [B, M, K], y: [K]
3755
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
3756

3757
            # x: [K], y: [K]
3758
            # fluid.layers.matmul(x, y)  # out: [1]
3759

Y
ying 已提交
3760
            # x: [M], y: [N]
3761 3762
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

3763
            import paddle
3764
            import paddle.fluid as fluid
3765 3766
            paddle.enable_static()

3767 3768 3769
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
3770
    """
J
Jiabin Yang 已提交
3771
    if _non_static_mode():
S
ShenLiang 已提交
3772
        out = _varbase_creator(dtype=x.dtype)
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
3784 3785 3786 3787 3788
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
3789 3790 3791
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
3805 3806 3807 3808 3809 3810
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
3822 3823
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
3824

W
wanghuancoder 已提交
3825 3826 3827 3828 3829 3830
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
3831 3832 3833 3834
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
3835 3836 3837 3838 3839 3840
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
3841
    return out
3842 3843


3844
def topk(input, k, name=None):
Q
qingqing01 已提交
3845
    """
3846
    :alias_main: paddle.topk
3847 3848
        :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk
        :old_api: paddle.fluid.layers.topk
3849

3850
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
3851 3852
    for the last dimension.

3853 3854
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
3855 3856 3857 3858

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3859 3860
    .. code-block:: text

3861 3862 3863 3864 3865
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
3866 3867 3868 3869
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

3870
          Output:
F
fengjiayi 已提交
3871
            The first output:
3872 3873
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
3874 3875 3876 3877
                      [10, 25],
                      [6, 10]]

            The second output:
3878 3879
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
3880 3881 3882
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3883
    Args:
3884 3885 3886 3887
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
3888 3889

    Returns:
3890 3891
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
3892

F
fengjiayi 已提交
3893
    Raises:
3894
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
3895 3896 3897 3898

    Examples:
        .. code-block:: python

3899
            import paddle.fluid as fluid
3900
            import paddle.fluid.layers as layers
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
3914
    """
J
Jiabin Yang 已提交
3915
    if _non_static_mode():
3916
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
3917
        out, indices = _legacy_C_ops.top_k(input, 'k', _k)
3918 3919 3920
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
3921

3922 3923
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
3924 3925 3926 3927 3928
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

3929 3930 3931 3932
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

3933 3934 3935 3936 3937 3938
    helper.append_op(
        type="top_k",
        inputs=inputs,
        outputs={"Out": [values], "Indices": [indices]},
        attrs=attrs,
    )
Q
qingqing01 已提交
3939 3940 3941 3942 3943
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3944 3945 3946
def ctc_greedy_decoder(
    input, blank, input_length=None, padding_value=0, name=None
):
3947
    r"""
S
SunGaofeng 已提交
3948
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
3949

S
SunGaofeng 已提交
3950
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
3951 3952 3953
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3954

S
SunGaofeng 已提交
3955
    This op is implemented in two modes: lod and padding, either of them can be used.
3956
    The input can be either LoDTensor or Tensor, corresponding to lod and padding
S
SunGaofeng 已提交
3957 3958
    mode respectively.

3959 3960 3961 3962 3963
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
3964
        (1) for lod mode:
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3976
        input.lod = [[4, 4]]
M
minqiyang 已提交
3977

W
whs 已提交
3978
        Computation:
3979

W
whs 已提交
3980 3981 3982 3983 3984 3985
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
3986 3987 3988 3989 3990

        output.data = [[2],
                       [1],
                       [3]]

3991
        output.lod = [[2, 1]]
3992

S
SunGaofeng 已提交
3993
        (2) for padding mode:
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
4010
        step2: Change the argmax result to use padding mode, then argmax result is
4011 4012 4013 4014 4015 4016 4017 4018 4019
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4020
    Parameters:
4021

4022 4023
        input(Variable): the probabilities of variable-length sequences. When in lod mode,
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1]
Y
ying 已提交
4024
                         where Lp is the sum of all input sequences' length and
4025 4026
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4027
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4028
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4029
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4030
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4031 4032
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4033
        padding_value(int): padding value.
4034 4035 4036
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
4037 4038

    Returns:
S
SunGaofeng 已提交
4039 4040 4041 4042 4043
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

4044
        For padding mode, returns a tuple of (output, output_length), which was described as below:
S
SunGaofeng 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4056 4057 4058 4059

    Examples:
        .. code-block:: python

4060
            # for lod mode
S
SunGaofeng 已提交
4061
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4062
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4063
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4064 4065

            # for padding mode
S
SunGaofeng 已提交
4066 4067
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4068 4069 4070
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4071
    """
4072 4073 4074
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder'
    )
4075

4076
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4077
    _, topk_indices = topk(input, k=1)
4078 4079

    # ctc align op
X
Xin Pan 已提交
4080
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4081 4082

    if input_length is None:
4083 4084 4085 4086 4087 4088
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True, "blank": blank},
        )
4089 4090 4091
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
4092
        ctc_input = paddle.squeeze(topk_indices, [2])
4093

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input], "InputLength": [input_length]},
            outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value,
            },
        )
4104
        return ctc_out, ctc_out_len
4105 4106


4107 4108 4109 4110 4111 4112 4113 4114 4115
def im2sequence(
    input,
    filter_size=1,
    stride=1,
    padding=0,
    input_image_size=None,
    out_stride=1,
    name=None,
):
4116
    r"""
4117 4118
    :api_attr: Static Graph

4119
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
4120 4121 4122
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
4123 4124
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4125 4126 4127

    .. math::

L
Liufang Sang 已提交
4128 4129 4130 4131
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
4132

L
Liufang Sang 已提交
4133
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
4134

L
Liufang Sang 已提交
4135 4136
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
4137

L
Liufang Sang 已提交
4138 4139 4140
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
4141

L
Liufang Sang 已提交
4142 4143
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
4144

L
Liufang Sang 已提交
4145 4146 4147 4148 4149
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
4150
            padding_up = padding_down = padding_left = padding_right = padding.
L
Liufang Sang 已提交
4151
            Default is 0.
4152

L
Liufang Sang 已提交
4153 4154 4155 4156
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
4157
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
4158 4159 4160 4161 4162
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
4163 4164 4165

    Returns:
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \
L
Liufang Sang 已提交
4166 4167 4168
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4196 4197 4198
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4211
            output.dims = {8, 8}
4212

4213
            output.lod = [[4, 4]]
4214

T
Tink_Y 已提交
4215
    Examples:
4216 4217 4218

        .. code-block:: python

B
Bai Yifan 已提交
4219
            import paddle.fluid as fluid
4220 4221
            import paddle
            paddle.enable_static()
L
Liufang Sang 已提交
4222
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
4223
                                     dtype='float32')
4224
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
4225 4226
                input=data, stride=[1, 1], filter_size=[2, 2])

4227 4228

    """
4229 4230 4231
    assert (
        not _non_static_mode()
    ), "sequence layer is not supported in dygraph mode yet."
W
wanghaoshuang 已提交
4232

4233 4234
    check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence')

W
wanghaoshuang 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4244
    inputs = {"X": input}
4245
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
4246 4247 4248 4249 4250
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4251
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4253 4254 4255
    helper.append_op(
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
4256
    return out
4257 4258


Y
yuyang18 已提交
4259
@templatedoc()
4260
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4261
    """
4262 4263
    :api_attr: Static Graph

Y
yuyang18 已提交
4264
    ${comment}
4265 4266

    Args:
Y
yuyang18 已提交
4267
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4268 4269
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4270 4271 4272 4273 4274
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4275
        ${out_comment}.
4276 4277

    Examples:
B
Bai Yifan 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
4290 4291
    """
    helper = LayerHelper('row_conv', **locals())
4292
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
4293
    dtype = helper.input_dtype()
4294
    filter_shape = [future_context_size + 1, input.shape[-1]]
4295 4296 4297
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
4298
    out = helper.create_variable_for_type_inference(dtype)
4299 4300 4301 4302 4303
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
4304
    return helper.append_activation(out)
4305 4306


Y
yuyang18 已提交
4307
@templatedoc()
4308
def multiplex(inputs, index, name=None):
4309
    """
Y
yuyang18 已提交
4310

4311
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
4312

4313
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
4314

4315
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
4316

4317
    For Example:
L
lujun 已提交
4318

4319
            .. code-block:: text
L
lujun 已提交
4320

4321
                Given:
L
lujun 已提交
4322

4323 4324 4325 4326
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
4327

4328
                index = [[3],[0],[1],[2]]
L
lujun 已提交
4329

4330 4331 4332 4333
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
4334 4335


4336
    Args:
4337 4338 4339 4340 4341
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
4342
    Returns:
4343
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
4344 4345

    Examples:
4346

X
xuezhong 已提交
4347 4348
        .. code-block:: python

4349
            import paddle
4350 4351 4352
            import numpy as np
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
4353 4354 4355
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            res = paddle.multiplex(inputs, index)
4356
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
4357

4358
    """
4359 4360

    if _in_legacy_dygraph():
4361
        return _legacy_C_ops.multiplex(index, inputs)
4362
    if in_dygraph_mode():
4363
        return _C_ops.multiplex(inputs, index)
4364 4365
    helper = LayerHelper('multiplex', **locals())

4366 4367 4368
    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
4369 4370
            "inputs should be a list object with at least 2 elements."
        )
4371
    for id, x in enumerate(inputs):
4372 4373 4374 4375 4376 4377
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
4378
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
4379 4380

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4381 4382 4383 4384 4385
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
4386
    return out
X
xuezhong 已提交
4387 4388


4389 4390
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
4391

Y
Yibing Liu 已提交
4392 4393
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4394
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
4395
    and then sums all the losses. So the shape of output Variable is
4396
    [batch_size, 1].
4397

4398 4399
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4400
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4401
            A LoDTensor or Tensor with type float32.
4402
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4403
            L1 loss op with same shape as :attr:`x`.
4404
            A LoDTensor or Tensor with type float32.
4405
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4406 4407
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4408
            by this tensor element by element.
4409
            A Tensor with type float32.
4410
        outside_weight (Variable|None): A tensor with rank at least 2. This
4411 4412
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4413
            element by element.
4414
            A Tensor with type float32.
4415
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4416 4417
           scalar with default value 1.0.

4418
    Returns:
4419
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
4420 4421 4422 4423

    Examples:
        .. code-block:: python

4424
            import paddle.fluid as fluid
4425
            import numpy as np
4426 4427
            import paddle
            paddle.enable_static()
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
4439

4440 4441 4442 4443
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

4444
    """
4445 4446
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss')
4447

4448
    helper = LayerHelper('smooth_l1_loss', **locals())
4449

X
Xin Pan 已提交
4450 4451
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight,
        },
        outputs={'Diff': diff, 'Out': loss},
        attrs={'sigma': sigma if sigma is not None else 1.0},
    )
4463
    return loss
4464 4465


4466
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
4467
def one_hot(input, depth, allow_out_of_range=False):
4468
    """
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
4507
                        [0., 1., 0., 0.],
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
4520
            The second dimension in X is 5, which is greater than depth.
4521 4522
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
4523 4524

    Args:
4525 4526 4527
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
4528
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
4529
            is word id, depth is generally the dictionary size.
4530
        allow_out_of_range(bool): A bool value indicating whether the input
4531 4532 4533 4534
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
4535 4536

    Returns:
4537
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
4538 4539

    Examples:
C
caoying03 已提交
4540
        .. code-block:: python
4541

4542
            import paddle
4543
            import paddle.fluid as fluid
4544 4545
            paddle.enable_static()

4546 4547 4548
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
4549
    """
J
Jiabin Yang 已提交
4550
    if _non_static_mode():
S
songyouwei 已提交
4551 4552 4553
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
4554 4555
                1,
            ), "depth of type Variable should have shape [1]"
4556
            depth = depth.item(0)
4557 4558 4559
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
4560 4561
        out.stop_gradient = True
        return out
4562

4563
    helper = LayerHelper("one_hot", **locals())
4564
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
4565
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
4566
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4567

4568 4569
    if not isinstance(depth, Variable):
        # user attribute
4570
        inputs = {'X': input}
Y
Yi Liu 已提交
4571
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
4572
    else:
4573 4574 4575
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
4576 4577 4578
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
4579
    one_hot_out.stop_gradient = True
4580
    return one_hot_out
Y
Yu Yang 已提交
4581 4582


Y
Yu Yang 已提交
4583
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4584
    """
4585 4586
    :api_attr: Static Graph

4587 4588
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
4589
    and the step size is 1.
Y
Yu Yang 已提交
4590 4591

    Args:
Y
Yibing Liu 已提交
4592 4593 4594
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
4595

4596
    Returns:
Y
Yibing Liu 已提交
4597
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
4598 4599 4600 4601

    Examples:
        .. code-block:: python

4602
           import paddle.fluid as fluid
4603 4604
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
4605
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
4606
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
4607 4608
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4609 4610
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4611
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
4612 4613 4614 4615
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
4616 4617
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
4618
    if is_new_var:
4619 4620 4621
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
4622
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4623 4624
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4625
            outputs={'Out': [counter]},
4626 4627
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
4628 4629 4630
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4631 4632


4633
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4634
    """
4635
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
4636 4637
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4638

M
minqiyang 已提交
4639
    For example:
H
haowang101779990 已提交
4640 4641 4642

    .. code-block:: text

M
minqiyang 已提交
4643
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4644
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4645

Y
Yibing Liu 已提交
4646
    Args:
4647
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
4648
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
4649
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4650 4651

    Returns:
4652
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
4653 4654 4655 4656

    Examples:
        .. code-block:: python

4657 4658 4659
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
4660

Y
Yibing Liu 已提交
4661
    """
J
Jiabin Yang 已提交
4662
    if _non_static_mode():
L
Leo Chen 已提交
4663 4664 4665
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
4666
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
4667 4668 4669 4670 4671
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
4672
        if _in_legacy_dygraph():
4673
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
4674
            return out
4675
        return _C_ops.unsqueeze(input, axes)
4676 4677

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
4705
        if utils._contain_var(axes):
4706
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
4707 4708 4709
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
4710 4711
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
4712 4713 4714 4715 4716 4717
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
4718

4719 4720
    return out

4721

Y
yangyaming 已提交
4722
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4723
    """
Y
Yibing Liu 已提交
4724
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4725 4726 4727 4728
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
4729
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4730 4731 4732 4733 4734 4735

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4736
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4737 4738 4739
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4740
            target_lod: [4, 2]
Y
yangyaming 已提交
4741 4742

            then we get a 1-level LoDTensor:
4743
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4744 4745 4746 4747 4748 4749
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4750
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4751 4752 4753 4754
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4755
                y.data = [[2, 4]]
Y
yangyaming 已提交
4756 4757 4758
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4759
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4760 4761 4762 4763 4764 4765
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4766
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4767 4768 4769 4770
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4771
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4772 4773 4774 4775
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4776
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4777 4778 4779 4780
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
4781
        x (Variable): Input variable which could be a Tensor or LoDTensor.
4782
                      The data type should be int32, int64, float32 or float64.
4783 4784
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
4785 4786
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
4787
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4788 4789

    Returns:
Y
Yibing Liu 已提交
4790
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4791 4792

    Raises:
Y
Yibing Liu 已提交
4793
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4794 4795 4796 4797

    Examples:
        .. code-block:: python

4798
            import paddle.fluid as fluid
4799 4800 4801
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
4802
    """
4803 4804 4805
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
4806
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
4807
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
4808
    if y is not None:
4809
        check_type(y, 'y', (Variable), 'lod_reset')
4810 4811 4812 4813
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
4814
    elif target_lod is not None:
4815 4816 4817 4818 4819 4820
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
4821
    else:
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
4847
        x (Variable): Input variable which could be a tensor or LoDTensor.
4848
                      The data type should be int32, int64, float32 or float64.
4849
        level (list|tuple|Variable, optional): The LoD level to be appended into LoD of x.
4850 4851
                                               If level is variable and its lod level>0, the data type can be any type.
                                               If level is variable and its lod level=0, the data type should be int32.
4852 4853 4854 4855 4856
    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    if x is None:
        raise ValueError("Input(x) can't be None.")
4867 4868 4869
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

4870 4871 4872
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_append'
    )
4873

4874 4875
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4876 4877 4878 4879 4880 4881

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
4882
        # TODO: check y.lod_level = 0 dtype
4883 4884
    else:
        attrs['target_lod'] = level
4885 4886 4887
    helper.append_op(
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
Y
yangyaming 已提交
4888
    return out
D
dragonwarrior 已提交
4889 4890


4891
def pad(x, paddings, pad_value=0.0, name=None):
4892
    r"""
4893
    :alias_main: paddle.nn.functional.pad
4894 4895
        :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad
        :old_api: paddle.fluid.layers.pad
4896

S
SunGaofeng 已提交
4897 4898
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
4899

S
SunGaofeng 已提交
4900 4901 4902 4903
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:
            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
4922
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
4923
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
4924
                         width before and after each dimension in turn.
4925
                         The length of :attr:`paddings` must be equal to
G
guosheng 已提交
4926 4927
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
4928 4929
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
4930
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4931 4932

    Returns:
S
SunGaofeng 已提交
4933 4934 4935 4936
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
4937 4938 4939

    Examples:
        .. code-block:: python
G
guosheng 已提交
4940

4941
            # x is a rank 2 tensor variable
S
SunGaofeng 已提交
4942
            import paddle.fluid as fluid
4943 4944
            x = fluid.data(name='data', shape=[300, 300], dtype='float32')
            out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)
G
guosheng 已提交
4945
    """
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
    check_variable_and_dtype(
        x,
        'x',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        "pad",
    )
4960

4961 4962 4963 4964
    check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
    if isinstance(pad_value, int):
        pad_value = float(pad_value)

4965 4966
    helper = LayerHelper('pad', **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4967
    out = helper.create_variable_for_type_inference(dtype)
4968 4969 4970 4971 4972 4973
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings, 'pad_value': pad_value},
    )
G
guosheng 已提交
4974
    return out
4975 4976


4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
4988
    """
4989

R
ruri 已提交
4990
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
4991

4992 4993
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
4994 4995
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
4996
    and the resizing only applies on the three dimensions(depth, height and width).
4997

4998
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4999 5000
    future and only use :attr:`out_shape` instead.

5001
    Supporting resample methods:
5002
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
5003

5004
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
5005

K
Kaipeng Deng 已提交
5006 5007
        'TRILINEAR' : Trilinear interpolation

5008
        'NEAREST' : Nearest neighbor interpolation
5009

5010
        'BICUBIC' : Bicubic interpolation
5011 5012

    Linear interpolation is the method of using a line connecting two known quantities
5013
    to determine the value of an unknown quantity between the two known quantities.
5014

5015
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
5016
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
5017
    direction) on input tensor.
5018 5019 5020 5021 5022

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5023 5024
    again in the other direction.

5025 5026 5027
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
5028
    The linear interpolation is performed on three directions.
5029

5030 5031 5032 5033
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
5034

5035
    Align_corners and align_mode are optional parameters,the calculation method
5036 5037 5038 5039
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
5040
    .. code-block:: text
5041

T
Tink_Y 已提交
5042
        For scale:
5043

T
Tink_Y 已提交
5044
            if align_corners = True && out_size > 1 :
5045

T
Tink_Y 已提交
5046
              scale_factor = (in_size-1.0)/(out_size-1.0)
5047

T
Tink_Y 已提交
5048
            else:
5049

T
Tink_Y 已提交
5050
              scale_factor = float(in_size/out_size)
5051 5052


T
Tink_Y 已提交
5053
        Nearest neighbor interpolation:
5054

T
Tink_Y 已提交
5055 5056
          if:
              align_corners = False
5057

T
Tink_Y 已提交
5058 5059
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5060

T
Tink_Y 已提交
5061 5062
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
5063

T
Tink_Y 已提交
5064 5065
          else:
              align_corners = True
5066

T
Tink_Y 已提交
5067 5068
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5069

T
Tink_Y 已提交
5070 5071
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
5072

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
5090 5091 5092 5093
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5094

T
Tink_Y 已提交
5095 5096
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5097

T
Tink_Y 已提交
5098 5099
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
5100

T
Tink_Y 已提交
5101
          else:
5102

T
Tink_Y 已提交
5103 5104
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5105

T
Tink_Y 已提交
5106 5107
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5108

K
Kaipeng Deng 已提交
5109 5110 5111 5112
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5113

K
Kaipeng Deng 已提交
5114 5115
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
5116

K
Kaipeng Deng 已提交
5117 5118 5119 5120 5121 5122
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
5123

K
Kaipeng Deng 已提交
5124 5125 5126 5127
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
5128

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
5141 5142
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5143

5144

5145 5146
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
5147

5148
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5149
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
5150

5151
    For details of bilinear interpolation, please refer to Wikipedia:
5152
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
5153

5154
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
5155
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
5156

5157 5158
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
5159

R
ruri 已提交
5160
    Parameters:
5161
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
5162
                          its data format is specified by :attr:`data_format`.
5163
        out_shape (list|tuple|Variable|None): Output shape of image resize
5164 5165
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
5166
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
5167
             If a Tensor Variable, its dimensions size should be a 1.
5168 5169 5170
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
5171
             Default: None.
5172 5173
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5174
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
5175
                       and 'NEAREST' currently. Default: 'BILINEAR'
5176 5177 5178
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5179
                                :attr:`out_shape` and :attr:`scale` specifying
5180 5181
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5182 5183 5184 5185 5186
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5187
                                errors would be occurred in graph constructing stage.
5188
                                Default: None
5189 5190
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
5191 5192
                               corner pixels.
                               Default: True
5193 5194
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
5195
                            can be \'1\' for src_idx = scale*dst_index.
5196
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5197
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
5198
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
5199
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
5200
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
5201 5202

    Returns:
5203
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
5204 5205
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
5206

5207 5208 5209
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5210 5211
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
5212
        ValueError: 'LINEAR' only support 3-D tensor.
5213
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
5214
        ValueError: 'TRILINEAR' only support 5-D tensor.
5215
        ValueError: One of out_shape and scale must not be None.
5216
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
5217 5218
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
5219
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
5220
        TypeError: align_corners should be a bool value
5221
        ValueError: align_mode can only be '0' or '1'
5222
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
5223

5224 5225
    Examples:
        .. code-block:: python
5226

5227 5228 5229 5230 5231 5232
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5233

5234 5235
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
5236

5237 5238 5239 5240 5241
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
5242

5243 5244 5245 5246 5247
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
5248

5249 5250 5251 5252 5253
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
5254

5255 5256 5257
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5258

5259
            input_data = np.random.rand(2,3,6,10).astype("float32")
5260

5261
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5262 5263 5264
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5265

5266
            print(output_data[0].shape)
5267

5268 5269 5270 5271 5272 5273 5274 5275
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5276

5277 5278
            #imperative mode
            import paddle.fluid.dygraph as dg
5279

5280 5281 5282 5283
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
5284

5285
                # [2L, 3L, 12L, 12L]
5286

5287
    """
5288
    resample_methods = {
5289
        'LINEAR': 'linear',
5290
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
5291
        'TRILINEAR': 'trilinear',
5292
        'NEAREST': 'nearest',
5293
        'LINEAR': 'linear',
5294
    }
5295
    resample = resample.upper()
5296 5297
    if resample not in resample_methods:
        raise ValueError(
5298
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
5299 5300
            "or 'NEAREST' currently."
        )
5301
    resample_type = resample_methods[resample]
5302

5303 5304 5305
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
5306
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
5307
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
5308 5309
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

5310 5311 5312 5313 5314
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

5315
    if out_shape is None and scale is None:
5316
        raise ValueError("One of out_shape and scale must not be None.")
5317
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5318
    dtype = helper.input_dtype()
5319

5320
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
5321
        raise ValueError(
5322 5323 5324 5325
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
5326
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
5327
        raise ValueError(
5328 5329 5330 5331
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
5332 5333
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
5334 5335 5336 5337
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
5338

5339
    def _is_list_or_turple_(data):
5340
        return isinstance(data, list) or isinstance(data, tuple)
5341

5342
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
5343
        data_layout = 'NCHW'
5344
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
5345 5346
        data_layout = 'NHWC'

5347
    inputs = {"X": input}
D
dengkaipeng 已提交
5348
    attrs = {
5349 5350 5351
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
5352 5353
        "interp_method": resample_type,
        "align_corners": align_corners,
5354
        "align_mode": align_mode,
5355
        "data_layout": data_layout,
D
dengkaipeng 已提交
5356 5357
    }

5358
    if out_shape is not None:
5359
        if isinstance(out_shape, Variable) and not _non_static_mode():
5360
            out_shape.stop_gradient = True
5361
            inputs['OutSize'] = out_shape
5362
        else:
5363 5364 5365 5366 5367 5368 5369 5370
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
5371
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
5372
                raise TypeError(
5373 5374
                    "out_shape should be a list or tuple or Variable."
                )
5375 5376 5377 5378 5379 5380
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
5381 5382 5383
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
5394
                        assert isinstance(dim, int)
5395
                        temp_out = helper.create_variable_for_type_inference(
5396 5397 5398 5399 5400
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
5401 5402 5403 5404
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

5405 5406
            if len(input.shape) == 3:
                if len(out_shape) != 1:
5407 5408 5409
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
5410 5411 5412 5413 5414 5415
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
5416
                if len(out_shape) != 2:
5417 5418 5419
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
5420 5421 5422 5423 5424 5425 5426
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
5427 5428
            if len(input.shape) == 5:
                if len(out_shape) != 3:
5429 5430 5431
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
5432 5433 5434 5435 5436 5437 5438 5439 5440
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
5441

5442
    else:
5443 5444 5445
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
5446 5447
            scale.stop_gradient = True
            inputs["Scale"] = scale
5448
        elif isinstance(scale, float) or isinstance(scale, int):
5449
            if scale <= 0:
5450
                raise ValueError("Attr(scale) should be greater than zero.")
5451
            attrs['scale'] = float(scale)
5452 5453
        else:
            raise TypeError(
5454 5455
                "Attr(scale)'s type should be float, int or Variable."
            )
5456

5457
    if isinstance(actual_shape, Variable):
5458 5459 5460 5461 5462
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
5463 5464 5465
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
5466 5467 5468 5469 5470 5471 5472 5473 5474

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
5475
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
5476
        elif resample_type == "bilinear":
5477
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
5478
        elif resample_type == "trilinear":
5479
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
5480
        elif resample_type == "nearest":
5481
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
5482
        elif resample_type == "bicubic":
5483
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
5484 5485
        return out

X
Xin Pan 已提交
5486
    out = helper.create_variable_for_type_inference(dtype)
5487 5488 5489 5490 5491 5492
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
5493
    return out
F
stash  
fengjiayi 已提交
5494 5495


5496
@templatedoc(op_type="bilinear_interp")
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
5507
    """
5508

R
ruri 已提交
5509
    This op resizes the input by performing bilinear interpolation based on given
5510
    output shape which specified by actual_shape, out_shape and scale
5511 5512
    in priority order.

5513
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
5514 5515
    the future and only use :attr:`out_shape` instead.

5516 5517 5518 5519
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
5520 5521
    again in the other direction.

5522
    For details of bilinear interpolation, please refer to Wikipedia:
5523
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5524

5525
    Align_corners and align_mode are optional parameters,the calculation
5526 5527 5528 5529
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
5530
    .. code-block:: text
5531

T
Tink_Y 已提交
5532
        For scale:
5533

T
Tink_Y 已提交
5534
            if align_corners = True && out_size > 1 :
5535

T
Tink_Y 已提交
5536
              scale_factor = (in_size-1.0)/(out_size-1.0)
5537

T
Tink_Y 已提交
5538
            else:
5539

5540
              scale_factor = float(in_size/out_size)
5541

T
Tink_Y 已提交
5542 5543 5544 5545
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
5546

T
Tink_Y 已提交
5547 5548
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5549

T
Tink_Y 已提交
5550 5551
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
5552

T
Tink_Y 已提交
5553
          else:
T
tink2123 已提交
5554

T
Tink_Y 已提交
5555 5556 5557 5558
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
5559

R
ruri 已提交
5560 5561
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
5562
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
5563
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
5564 5565
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
5566
            Tensor Variable, its dimension size should be 1.
5567
        scale(float|Variable|None): The multiplier for the input height or width. At
5568 5569
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
5570
             Default: None.
5571 5572 5573
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5574
                                :attr:`out_shape` and :attr:`scale` specifying
5575 5576
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5577 5578 5579 5580 5581
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5582
                                errors would be occurred in graph constructing stage.
5583
                                Default: None
5584 5585
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
5586
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5587 5588 5589
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
5590
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
5591 5592

    Returns:
5593
        Variable: 4-D tensor(NCHW or NHWC).
5594

5595 5596
    Examples:
        .. code-block:: python
5597

5598 5599 5600 5601 5602 5603
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5604

5605 5606
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
5607

5608 5609 5610 5611 5612
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
5613

5614 5615 5616 5617 5618
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
5619

5620 5621 5622 5623 5624
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
5625

5626 5627 5628
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5629

5630
            input_data = np.random.rand(2,3,6,10).astype("float32")
5631

5632
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5633 5634 5635
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5636

5637
            print(output_data[0].shape)
5638

5639 5640 5641 5642 5643 5644 5645 5646
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5647

5648 5649
            #imperative mode
            import paddle.fluid.dygraph as dg
5650

5651 5652 5653 5654
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
5655

5656
                # [2L, 3L, 12L, 12L]
5657

5658 5659
    """

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
5671 5672


K
Kaipeng Deng 已提交
5673
@templatedoc(op_type="trilinear_interp")
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
5684
    """
5685

R
ruri 已提交
5686
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
5687 5688 5689
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

5690
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
5691 5692
    in the future and only use :attr:`out_shape` instead.

5693 5694 5695
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
5696 5697 5698 5699 5700
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

5701
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
5702 5703 5704 5705 5706 5707 5708
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
5709

K
Kaipeng Deng 已提交
5710 5711 5712
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
5713

K
Kaipeng Deng 已提交
5714
            else:
5715 5716

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
5717 5718 5719 5720

        Bilinear interpolation:

          if:
5721

K
Kaipeng Deng 已提交
5722
              align_corners = False , align_mode = 0
5723

K
Kaipeng Deng 已提交
5724 5725
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
5726

K
Kaipeng Deng 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
5740
    Parameters:
5741 5742
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
5743
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
5744
        scale(float|Variable|None): The multiplier for the input depth, height or width.
5745 5746
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
5747
             Default: None.
R
ruri 已提交
5748
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
5749 5750 5751 5752 5753 5754
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5755 5756 5757 5758 5759
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5760
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
5761 5762 5763
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
5764
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5765 5766 5767
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
5768 5769

    Returns:
5770
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
5771 5772 5773

    Examples:
        .. code-block:: python
5774

5775 5776 5777 5778 5779 5780
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
5781

5782 5783
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
5784

5785 5786 5787 5788 5789
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
5790

5791 5792 5793 5794 5795
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
5796

5797 5798 5799 5800 5801
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
5802

5803 5804 5805
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5806

5807
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
5808

5809
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5810 5811 5812
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5813

5814
            print(output_data[0].shape)
R
ruri 已提交
5815

5816 5817 5818 5819 5820 5821 5822 5823
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
5824

5825 5826
            #imperative mode
            import paddle.fluid.dygraph as dg
5827

5828 5829 5830 5831
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
5832

5833
                # [2L, 3L, 12L, 12L, 12L]
5834 5835 5836



K
Kaipeng Deng 已提交
5837 5838
    """

5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
5850 5851


5852
@templatedoc(op_type="nearest_interp")
5853 5854 5855 5856 5857 5858 5859 5860 5861
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
5862
    """
5863

R
ruri 已提交
5864
    This op resizes the input by performing nearest neighbor interpolation in both the
5865
    height direction and the width direction based on given output shape
5866
    which is specified by actual_shape, out_shape and scale in priority order.
5867

5868
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
5869 5870
    future and only use :attr:`out_shape` instead.

5871 5872
    Example:

T
Tink_Y 已提交
5873 5874 5875
    .. code-block:: text

        For scale:
5876

T
Tink_Y 已提交
5877 5878
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
5879

T
Tink_Y 已提交
5880
            else:
5881

T
Tink_Y 已提交
5882
              scale_factor = float(in_size/out_size)
5883

T
Tink_Y 已提交
5884
        Nearest neighbor interpolation:
5885

T
Tink_Y 已提交
5886 5887
          if:
              align_corners = False
5888

T
Tink_Y 已提交
5889 5890
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5891

T
Tink_Y 已提交
5892 5893
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
5894

T
Tink_Y 已提交
5895 5896
          else:
              align_corners = True
5897

T
Tink_Y 已提交
5898 5899
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
5900

T
Tink_Y 已提交
5901 5902
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
5903 5904


5905
    For details of nearest neighbor interpolation, please refer to Wikipedia:
5906
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5907

R
ruri 已提交
5908
    Parameters:
5909 5910
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
5911
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
5912
        scale(float|Variable|None): The multiplier for the input height or width. At
5913 5914 5915
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
5916
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
5917
        actual_shape(Variable): An optional input to specify output shape
5918 5919
                                dynamically. If provided, image resize
                                according to this given shape rather than
5920
                                :attr:`out_shape` and :attr:`scale` specifying
5921 5922
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
5923 5924 5925 5926 5927
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
5928
                                errors would be occurred in graph constructing stage.
5929
                                Default: None
5930
        align_corners(bool): ${align_corners_comment}
5931
        data_format (str, optional): Specify the data format of the input, and the data format of the output
5932 5933 5934
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
5935 5936

    Returns:
5937
        Variable: 4-D tensor(NCHW or NHWC).
5938 5939 5940

    Examples:
        .. code-block:: python
5941

5942 5943 5944 5945 5946
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
5947

5948
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
5949

5950 5951
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
5952

5953 5954 5955 5956 5957
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
5958

5959 5960 5961 5962 5963
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
5964

5965 5966 5967 5968 5969
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
5970

5971 5972 5973
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
5974

5975
            input_data = np.random.rand(2,3,6,10).astype("float32")
5976

5977
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
5978 5979 5980
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
5981

5982
            print(output_data[0].shape)
R
ruri 已提交
5983

5984 5985 5986 5987 5988 5989 5990 5991
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
5992

5993 5994
            #imperative mode
            import paddle.fluid.dygraph as dg
5995

5996 5997 5998 5999
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
6000

6001
                # [2L, 3L, 12L, 12L]
6002 6003 6004



6005 6006
    """

6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
6018 6019


6020
@deprecated(since="2.0.0", update_to="paddle.gather_nd")
6021 6022 6023 6024
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

6025 6026 6027 6028
    This function is actually a high-dimensional extension of :code:`gather`
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional
    tensor of :attr:`index` into :attr:`input`, where each element defines
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
6051 6052 6053

                gather_nd(input, index)
                         = [input[1, :, :]]
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
6073
        input (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64.
6074 6075 6076 6077
        index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank.
                        Its dtype should be int32, int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
                        For more information, please refer to :ref:`api_guide_Name` .
6078 6079

    Returns:
6080
        output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
6081 6082 6083 6084 6085

    Examples:

        .. code-block:: python

6086
            import paddle
6087
            import paddle.fluid as fluid
6088 6089
            paddle.enable_static()

6090 6091
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
6092 6093 6094
            output = fluid.layers.gather_nd(x, index)

    """
6095
    if in_dygraph_mode():
6096
        return _C_ops.gather_nd(input, index)
J
Jiabin Yang 已提交
6097 6098
    else:
        if _in_legacy_dygraph():
6099
            return _legacy_C_ops.gather_nd(input, index)
6100
    check_variable_and_dtype(
6101 6102 6103 6104 6105
        input,
        'input',
        ['bool', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'gather_np',
    )
6106
    check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np')
6107 6108
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
6109
    output = helper.create_variable_for_type_inference(dtype)
6110 6111 6112 6113 6114
    helper.append_op(
        type="gather_nd",
        inputs={"X": input, "Index": index},
        outputs={"Out": output},
    )
6115 6116 6117
    return output


6118
def log(x, name=None):
6119
    r"""
W
wanghaoshuang 已提交
6120 6121 6122 6123
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6124
        Out = \\ln(x)
W
wanghaoshuang 已提交
6125 6126

    Args:
S
Steffy-zxf 已提交
6127
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
W
Wilber 已提交
6128
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
6129

W
wanghaoshuang 已提交
6130 6131

    Returns:
S
Steffy-zxf 已提交
6132
        Tensor: The natural log of the input Tensor computed element-wise.
W
wanghaoshuang 已提交
6133 6134 6135 6136 6137

    Examples:

        .. code-block:: python

S
Steffy-zxf 已提交
6138
            import paddle
W
Wilber 已提交
6139

S
Steffy-zxf 已提交
6140 6141 6142 6143
            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
W
wanghaoshuang 已提交
6144
    """
6145
    if in_dygraph_mode():
W
wanghuancoder 已提交
6146
        return _C_ops.log(x)
6147 6148
    if _in_legacy_dygraph():
        return _legacy_C_ops.log(x)
6149

6150
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log")
6151
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
6152
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6153
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6154
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6155
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6156 6157 6158
    return out


6159
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
6160
def relu(x, name=None):
W
wanghaoshuang 已提交
6161
    """
Z
zhupengyang 已提交
6162
    ${comment}
W
wanghaoshuang 已提交
6163 6164

    Args:
Z
zhupengyang 已提交
6165 6166 6167 6168
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
6169 6170

    Returns:
Z
zhupengyang 已提交
6171
        Variable: ${out_comment}
W
wanghaoshuang 已提交
6172 6173 6174 6175 6176

    Examples:

        .. code-block:: python

6177
            import paddle.fluid as fluid
Z
zhupengyang 已提交
6178 6179 6180 6181 6182 6183 6184
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
6185
                #  [1.  2.6]]"""
6186 6187

    if in_dygraph_mode():
W
wanghuancoder 已提交
6188
        return _C_ops.relu(x)
6189 6190
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
6191

6192 6193
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

6194
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
6195
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6196
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6197
    out = helper.create_variable_for_type_inference(dtype)
6198 6199 6200
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
6201
    return out
6202 6203


Z
zhupengyang 已提交
6204
@deprecated(since="2.0.0", update_to="paddle.static.nn.prelu")
6205
def prelu(x, mode, param_attr=None, data_format="NCHW", name=None):
6206
    r"""
U
ustiniankw 已提交
6207

Z
zhupengyang 已提交
6208
    prelu activation.
J
jerrywgz 已提交
6209

H
haowang101779990 已提交
6210
    .. math::
S
sunzhongkai588 已提交
6211
        prelu(x) = max(0, x) + \alpha * min(0, x)
J
jerrywgz 已提交
6212

J
jerrywgz 已提交
6213 6214 6215 6216 6217 6218 6219 6220
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

Z
zhupengyang 已提交
6221 6222
    Parameters:
        x (Tensor): The input Tensor or LoDTensor with data type float32.
6223
        mode (str): The mode for weight sharing.
U
ustiniankw 已提交
6224 6225 6226
        param_attr (ParamAttr|None, optional): The parameter attribute for the learnable
            weight (alpha), it can be create by ParamAttr. None by default.
            For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
6227 6228
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
U
ustiniankw 已提交
6229 6230
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
J
jerrywgz 已提交
6231 6232

    Returns:
U
ustiniankw 已提交
6233
        Tensor, A tensor with the same shape and data type as x.
J
jerrywgz 已提交
6234 6235 6236 6237

    Examples:
        .. code-block:: python

6238
            import paddle
Z
zhupengyang 已提交
6239 6240 6241 6242 6243

            x = paddle.to_tensor([-1., 2., 3.])
            param = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.2))
            out = paddle.static.nn.prelu(x, 'all', param)
            # [-0.2, 2., 3.]
J
jerrywgz 已提交
6244

J
jerrywgz 已提交
6245
    """
G
Guoxia Wang 已提交
6246
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
6247

J
jerrywgz 已提交
6248 6249 6250
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
6251

J
jerrywgz 已提交
6252 6253
    alpha_shape = [1]
    if mode == 'channel':
6254 6255

        true_data_format = [
6256 6257 6258 6259 6260 6261 6262
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
6263 6264 6265 6266
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
6267 6268
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
6269 6270 6271

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

6272 6273 6274 6275
        assert (
            len(x.shape) >= 2
        ), "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'"
        # NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]).
6276
        # To be consistent with Prelu, it is simplified.
6277 6278
        # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
        # NOTE(GuoxiaWang): support NHWC data format
6279
        if data_format == 'NHWC':
6280
            alpha_shape = [1, 1, 1, x.shape[-1]]
6281 6282 6283
        else:
            alpha_shape = [1, x.shape[1], 1, 1]

J
jerrywgz 已提交
6284
    elif mode == 'element':
6285 6286 6287
        assert (
            len(x.shape) >= 1
        ), "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'"
6288
        alpha_shape = [1] + list(x.shape)[1:]
J
jerrywgz 已提交
6289
    dtype = helper.input_dtype(input_param_name='x')
6290 6291 6292 6293 6294 6295 6296
    alpha = helper.create_parameter(
        attr=helper.param_attr,
        shape=alpha_shape,
        dtype=dtype,
        is_bias=False,
        default_initializer=Constant(0.25),
    )
6297 6298 6299
    if in_dygraph_mode():
        return _C_ops.prelu(x, alpha, data_format, mode)

X
Xin Pan 已提交
6300
    out = helper.create_variable_for_type_inference(dtype)
6301 6302 6303 6304 6305 6306
    helper.append_op(
        type="prelu",
        inputs={"X": x, 'Alpha': alpha},
        attrs={"mode": mode, "data_format": data_format},
        outputs={"Out": out},
    )
6307 6308 6309
    return out


G
fix  
gongweibao 已提交
6310 6311 6312
from paddle.fluid.framework import convert_np_dtype_to_dtype_


6313
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
6314
@templatedoc()
6315 6316 6317
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
6318
    """
6319 6320
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
6321 6322

    Args:
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
6338 6339

    Returns:
6340 6341
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
6342

6343
    Examples:
6344
       .. code-block:: python
6345

6346
            import paddle
6347
            import paddle.fluid as fluid
6348
            paddle.enable_static()
6349 6350

            # example 1:
6351
            # attr shape is a list which doesn't contain Tensor.
6352
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
6353 6354 6355
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
6356 6357

            # example 2:
6358 6359 6360
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
6361
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
6362 6363
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
6364 6365

            # example 3:
6366
            # attr shape is a Tensor, the data type must be int64 or int32.
6367 6368
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
6369 6370 6371 6372
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
6373

6374
       .. code-block:: python
6375

6376 6377
           # declarative mode
           # required: skiptest
6378 6379
           import numpy as np
           from paddle import fluid
6380

6381
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
6382

6383 6384 6385 6386
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
6387

6388 6389
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
6390

6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
6401

6402 6403 6404
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
6405
               x_np = x.numpy()
6406 6407 6408
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
6409
    """
6410 6411
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
6412

6413 6414 6415
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
6416
        return _C_ops.gaussian(
6417 6418
            shape, float(mean), float(std), seed, dtype, place
        )
6419 6420

    if _in_legacy_dygraph():
6421
        shape = utils.convert_shape_to_list(shape)
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
6434 6435 6436

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
6437 6438

    inputs = {}
6439 6440 6441 6442
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
6443
        'dtype': dtype,
6444
        'use_mkldnn': False,
6445
    }
6446 6447 6448
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
6449

6450 6451
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
6452 6453 6454
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
6455 6456 6457 6458

    return out


G
gongweibao 已提交
6459
@templatedoc()
G
fix  
gongweibao 已提交
6460
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6461
    """
R
ruri 已提交
6462
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
6463

R
ruri 已提交
6464 6465 6466 6467
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
6468
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
6469
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6470 6471

    Returns:
R
ruri 已提交
6472
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
6473

6474 6475 6476
    Examples:
        .. code-block:: python

6477
            import paddle.fluid as fluid
R
ruri 已提交
6478
            x = fluid.data(
6479 6480
                name="X",
                shape=[13, 11],
R
ruri 已提交
6481
                dtype='float32')
6482

Y
Yibing Liu 已提交
6483
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
6484 6485 6486
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6487
    out = helper.create_variable_for_type_inference(dtype)
6488 6489 6490 6491 6492 6493
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
6494 6495 6496 6497

    return out


G
gongweibao 已提交
6498
@templatedoc()
X
Xin Pan 已提交
6499
def sum(x):
G
fix  
gongweibao 已提交
6500
    """
G
gongweibao 已提交
6501
    ${comment}
6502

6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
6532 6533

    Args:
6534
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
6535 6536

    Returns:
6537
        Variable: ${out_comment}
6538 6539 6540 6541

    Examples:
        .. code-block:: python

6542
            import paddle.fluid as fluid
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
6562 6563
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
6564
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
6565 6566
    """

S
Steffy-zxf 已提交
6567
    return paddle.add_n(x)
G
fix  
gongweibao 已提交
6568 6569


G
gongweibao 已提交
6570
@templatedoc()
G
fix  
gongweibao 已提交
6571 6572
def slice(input, axes, starts, ends):
    """
6573
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
6574
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
6575 6576 6577 6578 6579 6580 6581
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
6582
    For slicing to the end of a dimension with unknown size, it is recommended
6583
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
6584 6585 6586
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
6587

6588 6589 6590 6591 6592 6593 6594 6595
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
6596

6597 6598 6599 6600 6601
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
6602
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
6603
            Then:
6604
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
6605

G
fix  
gongweibao 已提交
6606
    Args:
T
Thunderbrook 已提交
6607
        input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
6608
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to .
T
Thunderbrook 已提交
6609 6610
        starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor.
6611
                It represents starting indices of corresponding axis in ``axes``.
T
Thunderbrook 已提交
6612 6613
        ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor .
6614
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
6615 6616

    Returns:
T
Thunderbrook 已提交
6617
        Tensor:  A ``Tensor``. The data type is same as ``input``.
6618 6619

    Raises:
T
Thunderbrook 已提交
6620 6621
        TypeError: The type of ``starts`` must be list, tuple or Tensor.
        TypeError: The type of ``ends`` must be list, tuple or Tensor.
G
fix  
gongweibao 已提交
6622

6623 6624 6625
    Examples:
        .. code-block:: python

T
Thunderbrook 已提交
6626
            import paddle
6627

T
Thunderbrook 已提交
6628
            input = paddle.rand(shape=[4, 5, 6], dtype='float32')
6629
            # example 1:
T
Thunderbrook 已提交
6630
            # attr starts is a list which doesn't contain tensor.
6631 6632 6633
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
T
Thunderbrook 已提交
6634
            sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends)
6635
            # sliced_1 is input[0:3, 0:2, 2:4].
6636 6637

            # example 2:
T
Thunderbrook 已提交
6638 6639 6640
            # attr starts is a list which contain tensor.
            minus_3 = paddle.full([1], -3, "int32")
            sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
6641
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
6642
    """
6643
    if in_dygraph_mode():
6644 6645 6646
        attrs = ()
        starts_tensor = None
        ends_tensor = None
6647 6648

        if isinstance(axes, (list, tuple)):
6649
            axes = list(axes)
6650 6651
            if len(axes) == 0:
                raise ValueError(
6652 6653
                    "Input axes should not be an empty list/tuple."
                )
6654 6655 6656 6657 6658 6659 6660 6661
            for i in range(len(axes)):
                if axes[i] < 0:
                    axes[i] = max(0, axes[i] + len(input.shape))
                else:
                    axes[i] = min(len(input.shape) - 1, axes[i])

        else:
            raise ValueError(
6662 6663 6664 6665
                "Input axes must be a python list or tuple, but reveived {}".format(
                    type(axes)
                )
            )
6666

6667
        infer_flags = list(1 for i in range(len(axes)))
6668

J
Jiabin Yang 已提交
6669
        tmp_tensor_type = core.eager.Tensor
6670
        if isinstance(starts, (list, tuple)):
6671
            starts = [
6672
                item.numpy().item(0)
6673 6674
                if isinstance(item, tmp_tensor_type)
                else item
6675 6676
                for item in starts
            ]
6677
        elif isinstance(starts, tmp_tensor_type):
H
hong 已提交
6678 6679
            tensor_t = starts.numpy()
            starts = [ele for ele in tensor_t]
6680 6681

        if isinstance(ends, (list, tuple)):
6682
            ends = [
6683
                item.numpy().item(0)
6684 6685 6686
                if isinstance(item, tmp_tensor_type)
                else item
                for item in ends
6687
            ]
6688
            attrs += ('ends', ends)
6689
        elif isinstance(ends, tmp_tensor_type):
H
hong 已提交
6690 6691
            tensor_t = ends.numpy()
            ends = [ele for ele in tensor_t]
6692

6693
        return _C_ops.slice(input, axes, starts, ends, infer_flags, [])
J
Jiabin Yang 已提交
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
    else:
        if _in_legacy_dygraph():
            attrs = ()
            starts_tensor = None
            ends_tensor = None

            if isinstance(axes, (list, tuple)):
                axes = list(axes)
                if len(axes) == 0:
                    raise ValueError(
6704 6705
                        "Input axes should not be an empty list/tuple."
                    )
J
Jiabin Yang 已提交
6706 6707 6708 6709 6710 6711 6712 6713
                for i in range(len(axes)):
                    if axes[i] < 0:
                        axes[i] = max(0, axes[i] + len(input.shape))
                    else:
                        axes[i] = min(len(input.shape) - 1, axes[i])

            else:
                raise ValueError(
6714 6715 6716 6717
                    "Input axes must be a python list or tuple, but reveived {}".format(
                        type(axes)
                    )
                )
J
Jiabin Yang 已提交
6718 6719 6720 6721 6722 6723 6724 6725

            infer_flags = list(1 for i in range(len(axes)))

            tmp_tensor_type = Variable

            if isinstance(starts, (list, tuple)):
                starts = [
                    item.numpy().item(0)
6726 6727
                    if isinstance(item, tmp_tensor_type)
                    else item
J
Jiabin Yang 已提交
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
                    for item in starts
                ]
                attrs += ('starts', starts)
            elif isinstance(starts, tmp_tensor_type):
                starts_tensor = starts
                starts.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

            if isinstance(ends, (list, tuple)):
                ends = [
                    item.numpy().item(0)
6739 6740
                    if isinstance(item, tmp_tensor_type)
                    else item
J
Jiabin Yang 已提交
6741 6742 6743 6744 6745 6746 6747 6748
                    for item in ends
                ]
                attrs += ('ends', ends)
            elif isinstance(ends, tmp_tensor_type):
                ends_tensor = ends
                ends_tensor.stop_gradient = True
                infer_flags = list(-1 for i in range(len(axes)))

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
            return _legacy_C_ops.slice(
                input,
                starts_tensor,
                ends_tensor,
                None,
                None,
                'axes',
                axes,
                'infer_flags',
                infer_flags,
                *attrs,
            )
6761

6762 6763
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
6764 6765
            "Input starts must be an Variable, python list or tuple."
        )
6766 6767
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
6768 6769
            "Input ends must be an Variable, python list or tuple."
        )
6770

G
fix  
gongweibao 已提交
6771
    helper = LayerHelper('slice', **locals())
6772 6773 6774 6775 6776

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

6777 6778 6779 6780 6781 6782 6783
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
6784
        if utils._contain_var(starts):
6785
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
6786 6787 6788 6789 6790 6791
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
6792 6793
        else:
            attrs['starts'] = starts
6794 6795 6796 6797 6798 6799 6800 6801

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
6802
        if utils._contain_var(ends):
6803
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
6804 6805 6806 6807 6808 6809
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
6810 6811 6812
        else:
            attrs['ends'] = ends

6813 6814
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
6815
    out = helper.create_variable_for_type_inference(
6816 6817 6818 6819 6820
        dtype=helper.input_dtype('input')
    )
    helper.append_op(
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}
    )
G
fix  
gongweibao 已提交
6821 6822 6823 6824 6825 6826

    return out


def shape(input):
    """
6827
    :alias_main: paddle.shape
6828 6829
        :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
        :old_api: paddle.fluid.layers.shape
6830

C
chengduozh 已提交
6831 6832
    **Shape Layer**

C
fix doc  
chengduozh 已提交
6833
    Get the shape of the input.
G
fix  
gongweibao 已提交
6834

6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

G
fix  
gongweibao 已提交
6852
    Args:
6853
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
6854
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.
G
fix  
gongweibao 已提交
6855 6856

    Returns:
6857
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
6858

6859 6860 6861
    Examples:
        .. code-block:: python

6862
            import paddle.fluid as fluid
6863
            import numpy as np
W
Wilber 已提交
6864 6865
            import paddle
            paddle.enable_static()
6866

6867
            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
6868 6869 6870 6871 6872 6873 6874 6875 6876
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
6877
    """
6878
    if in_dygraph_mode():
6879
        out = _C_ops.shape(input)
6880 6881 6882
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
6883
        out = _legacy_C_ops.shape(input)
W
Wilber 已提交
6884 6885 6886
        out.stop_gradient = True
        return out

6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
G
fix  
gongweibao 已提交
6902
    helper = LayerHelper('shape', **locals())
6903
    out = helper.create_variable_for_type_inference(dtype='int32')
6904 6905 6906 6907 6908 6909
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
G
fix  
gongweibao 已提交
6910 6911

    return out
G
merge  
gongweibao 已提交
6912 6913


S
sneaxiy 已提交
6914 6915 6916 6917
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
6918

S
sneaxiy 已提交
6919 6920
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
6921
    check_variable_and_dtype(
6922 6923 6924 6925 6926
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
6927
    check_variable_and_dtype(
6928 6929 6930 6931 6932
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
6933

S
sneaxiy 已提交
6934 6935
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6936
    name = helper.kwargs.get('name', None)
6937
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
6938

6939 6940 6941 6942 6943 6944
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
6945 6946 6947
    return helper.append_activation(out)


X
Xin Pan 已提交
6948
def elementwise_add(x, y, axis=-1, act=None, name=None):
6949
    """
6950

6951
    Examples:
6952

6953
        .. code-block:: python
6954

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
6968

6969 6970 6971 6972
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
6973

6974
            print(z_value) # [3., 8., 6.]
6975 6976


6977
        .. code-block:: python
6978

6979 6980 6981
            import paddle.fluid as fluid
            import numpy as np
            import paddle
6982

6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
6993

6994 6995
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
6996

6997 6998
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
6999

7000
            print(z_value) # z.shape=[2,3,4,5]
7001 7002


7003
        ..  code-block:: python
7004

7005 7006 7007
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7008

7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
7019

7020 7021
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7022

7023 7024 7025
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7026 7027

    """
J
Jiabin Yang 已提交
7028
    if _non_static_mode():
7029
        return _elementwise_op_in_dygraph(
7030 7031 7032 7033 7034
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
7035 7036
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
7037

S
sneaxiy 已提交
7038 7039 7040
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


7041
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
7042
def elementwise_div(x, y, axis=-1, act=None, name=None):
7043
    """
7044

7045
    Examples:
7046

7047
        .. code-block:: python
7048

7049 7050 7051
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7052

7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
7063

7064 7065 7066 7067
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7068

7069
            print(z_value) # [2., 0.6, 2.]
7070 7071


7072
        .. code-block:: python
7073

7074 7075 7076
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7077

7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
7088

7089 7090
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7091

7092 7093
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7094

7095
            print(z_value) # z.shape=[2,3,4,5]
7096 7097


7098
        ..  code-block:: python
7099

7100 7101 7102
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7103

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
7114

7115 7116
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7117

7118 7119 7120
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7121 7122

    """
J
Jiabin Yang 已提交
7123
    if _non_static_mode():
7124 7125 7126
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
7127

S
sneaxiy 已提交
7128 7129 7130
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7131
def elementwise_sub(x, y, axis=-1, act=None, name=None):
7132
    """
7133

7134
    Examples:
7135

7136
        .. code-block:: python
7137

7138 7139 7140
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7141

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
7152

7153 7154 7155 7156
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7157

7158
            print(z_value) # [1., -2., 2.]
7159 7160


7161
        .. code-block:: python
7162

7163 7164 7165
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7166

7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
7177

7178 7179
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7180

7181 7182
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7183

7184
            print(z_value) # z.shape=[2,3,4,5]
7185 7186


7187
        ..  code-block:: python
7188

7189 7190 7191
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7192

7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
7203

7204 7205
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7206

7207 7208 7209
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7210 7211

    """
J
Jiabin Yang 已提交
7212
    if _non_static_mode():
7213 7214 7215
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
7216

S
sneaxiy 已提交
7217 7218 7219
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


7220
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
7221
def elementwise_mul(x, y, axis=-1, act=None, name=None):
7222
    """
7223

7224
    Examples:
7225

7226
        .. code-block:: python
7227

7228 7229 7230
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7231

7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
7242

7243 7244 7245 7246
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7247

7248
            print(z_value) # [2., 15., 8.]
7249 7250


7251
        .. code-block:: python
7252

7253 7254 7255
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7256

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
7267

7268 7269
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7270

7271 7272
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
7273

7274
            print(z_value) # z.shape=[2,3,4,5]
7275 7276


7277
        ..  code-block:: python
7278

7279 7280 7281
            import paddle.fluid as fluid
            import numpy as np
            import paddle
7282

7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
7293

7294 7295
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
7296

7297 7298 7299
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
7300

7301
    """
J
Jiabin Yang 已提交
7302
    if _non_static_mode():
7303 7304 7305
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
7306

S
sneaxiy 已提交
7307 7308 7309 7310
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
7311 7312 7313 7314
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
7315 7316
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
7317 7318

    # insert the c++ doc string on top of python doc string
7319 7320 7321 7322 7323
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
7324 7325
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
7326
                "act (string, optional): Activation applied to the output. \
7327
            Default is None. Details: :ref:`api_guide_activations_en` ",
7328
                "name (string, optional): Name of the output. \
7329
            Default is None. It's used to print debug info for developers. Details: \
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
7346

7347 7348 7349
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
7350 7351 7352 7353 7354
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
7355 7356 7357 7358
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

7359
for func in []:
S
sneaxiy 已提交
7360 7361 7362 7363
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7364
            "act (basestring|None): Activation applied to the output.",
7365 7366 7367 7368 7369 7370
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
7371 7372 7373

Examples:
  .. code-block:: python
7374

7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
7415 7416


7417
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
7418
    if _non_static_mode():
7419
        op = getattr(_legacy_C_ops, op_name)
7420 7421 7422 7423
        if binary_op:
            return op(x, y)
        else:
            return op(x)
7424
    check_variable_and_dtype(
7425 7426
        x,
        "x",
7427
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
7428 7429
        op_name,
    )
7430
    if y is not None:
7431
        check_variable_and_dtype(
7432 7433
            y,
            "y",
7434
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
7435 7436
            op_name,
        )
7437
    if out is not None:
7438
        check_type(out, "out", Variable, op_name)
7439

M
minqiyang 已提交
7440 7441
    helper = LayerHelper(op_name, **locals())

7442 7443 7444
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
7445 7446
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
7447 7448

    if out is None:
7449
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7450 7451

    if binary_op:
7452 7453 7454
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
7455 7456 7457 7458 7459 7460
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


7461 7462 7463
@templatedoc()
def clip(x, min, max, name=None):
    """
7464
        :old_api: paddle.fluid.layers.clip
7465

7466 7467 7468 7469
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
7470 7471
        min(float): ${min_comment}
        max(float): ${max_comment}
7472 7473
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
7474
                             For more information, please refer to :ref:`api_guide_Name`
7475 7476

    Returns:
S
SunGaofeng 已提交
7477 7478 7479 7480
        ${out_comment}

    Return Type:
        ${out_type}
7481 7482 7483 7484

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
7485
            import paddle.fluid as fluid
S
SunGaofeng 已提交
7486
            input = fluid.data(
7487 7488
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
7489 7490 7491
    """

    helper = LayerHelper("clip", **locals())
7492
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
7493 7494

    if name is None:
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
7521 7522 7523
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
7524 7525

    Returns:
7526
        Tensor:
W
wangguanzhong 已提交
7527

7528
        out(${out_type}): ${out_comment}
7529

W
wangguanzhong 已提交
7530

7531 7532 7533
    Examples:
        .. code-block:: python

7534
            import paddle
7535
            import paddle.fluid as fluid
7536

7537 7538 7539
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
7540 7541
    """

L
lyq 已提交
7542
    if in_dygraph_mode():
7543
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
7544
    if _non_static_mode():
7545
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
7546

7547
    helper = LayerHelper("clip_by_norm", **locals())
7548
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
7549
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
7550 7551

    if name is None:
7552 7553 7554
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
7555

7556 7557 7558
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
7559

7560 7561 7562 7563 7564 7565
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
7566 7567

    return out
X
Xin Pan 已提交
7568 7569


7570
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7582 7583 7584 7585

    Examples:
        .. code-block:: python

7586
            import paddle
7587
            import paddle.fluid as fluid
7588 7589
            paddle.enable_static()

7590 7591
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
7592
            mean = paddle.mean(input)
X
Xin Pan 已提交
7593
    """
7594

7595
    if _in_legacy_dygraph():
7596
        return _legacy_C_ops.mean(x)
7597
    if in_dygraph_mode():
7598
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
7599 7600

    helper = LayerHelper("mean", **locals())
7601
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
7602
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7603

7604 7605 7606
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
7607 7608 7609 7610

    return out


C
chengduo 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7622 7623 7624 7625

    Examples:
        .. code-block:: python

7626
            import paddle.fluid as fluid
7627 7628 7629 7630 7631
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
7632
    """
7633 7634 7635
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

7636
    if _non_static_mode():
7637
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
7638 7639 7640

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7641 7642 7643 7644 7645 7646
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
7647 7648 7649
    return out


X
Xin Pan 已提交
7650 7651
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
7652 7653 7654 7655 7656 7657 7658 7659
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
7660 7661

    Args:
L
liu zhengxi 已提交
7662 7663
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
7664 7665 7666
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
7667 7668

    Returns:
L
liu zhengxi 已提交
7669
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
7670 7671

    Examples:
L
liu zhengxi 已提交
7672
        ..  code-block:: python
7673

7674
            import paddle.fluid as fluid
7675 7676
            import paddle
            paddle.enable_static()
7677 7678 7679 7680 7681
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
7682

7683

X
Xin Pan 已提交
7684
    """
J
Jiabin Yang 已提交
7685
    if _non_static_mode():
7686 7687 7688 7689 7690 7691 7692 7693
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
7694

7695 7696
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
7697
    helper = LayerHelper("mul", **locals())
7698 7699
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
7700
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7701

7702 7703 7704
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
7705 7706 7707
    return out


7708
@deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout")
X
Xin Pan 已提交
7709
@templatedoc()
7710
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
7711 7712 7713 7714 7715
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
7716 7717
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
7718 7719
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
W
wangguanzhong 已提交
7720
            None by default.
X
Xin Pan 已提交
7721 7722

    Returns:
7723
        Variable: ${out_comment}
J
jerrywgz 已提交
7724

7725 7726
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
7727
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
7728

J
jerrywgz 已提交
7729 7730 7731
    Examples:
        .. code-block:: python

7732
            import paddle.fluid as fluid
7733 7734 7735
            import paddle
            paddle.enable_static()

7736
            input = fluid.data(
7737 7738
                name='data',
                shape=[None, 256, 32, 32],
J
jerrywgz 已提交
7739 7740
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
7741
    """
7742
    return paddle.nn.functional.maxout(**locals())
7743 7744


J
JiabinYang 已提交
7745
def space_to_depth(x, blocksize, name=None):
7746
    r"""
7747

J
JiabinYang 已提交
7748
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
7749

7750 7751 7752
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
7753
    The attr blocksize indicates the input block size.
7754

T
tianshuo78520a 已提交
7755
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
7756 7757
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7758

J
JiabinYang 已提交
7759 7760 7761 7762 7763
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
7781

J
JiabinYang 已提交
7782
    Args:
7783 7784 7785 7786 7787 7788
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
7789

7790
    Returns:
7791
            Tensor, The output, which should be 4 dims Tensor or LodTensor, with the shape \
7792 7793
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

J
JiabinYang 已提交
7794 7795
    Examples:
        .. code-block:: python
7796

7797 7798
            import paddle.fluid as fluid
            import numpy as np
7799 7800
            import numpy as np
            import paddle
J
JiabinYang 已提交
7801

7802
            paddle.enable_static()
7803 7804
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7805
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7806
                x=data, blocksize=2)
7807

7808
            exe = fluid.Executor(fluid.CPUPlace())
7809
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
7810 7811 7812 7813 7814 7815 7816

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

7817
            out_main = exe.run(fluid.default_main_program(),
7818 7819 7820 7821 7822 7823 7824 7825
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
7826

J
JiabinYang 已提交
7827 7828
    """

J
JiabinYang 已提交
7829
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7830

J
JiabinYang 已提交
7831 7832
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7833

7834 7835 7836 7837 7838 7839
    check_variable_and_dtype(
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'space_to_depth',
    )
X
xujiaqi01 已提交
7840

7841
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
J
JiabinYang 已提交
7842

7843 7844 7845 7846 7847 7848
    helper.append_op(
        type="space_to_depth",
        inputs={"X": x},
        attrs={"blocksize": blocksize},
        outputs={"Out": out},
    )
J
JiabinYang 已提交
7849 7850
    return out

J
JiabinYang 已提交
7851

7852 7853 7854
def affine_channel(
    x, scale=None, bias=None, data_layout='NCHW', name=None, act=None
):
7855
    """
7856

7857 7858 7859 7860
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7861

7862 7863 7864
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
7865
            is applied in the second dimension.The data type is float32 or float64.
7866 7867
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
7868
            the input.The data type is float32 or float64.
7869 7870
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
7871
            The data type is float32 or float64.
7872
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
7873 7874
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
7875
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore
7876
            data_layout.
L
LielinJiang 已提交
7877 7878
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
7879
        act (str, default None): Activation to be applied to the output of this layer.
7880 7881

    Returns:
L
LielinJiang 已提交
7882
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
7883 7884 7885

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
7886 7887

            import numpy as np
B
Bai Yifan 已提交
7888
            import paddle.fluid as fluid
7889 7890
            import paddle.fluid as fluid
            import paddle
L
LielinJiang 已提交
7891

7892
            paddle.enable_static()
L
LielinJiang 已提交
7893 7894 7895 7896 7897 7898 7899 7900 7901
            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
7902
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
7913

7914 7915
    """
    helper = LayerHelper("affine_channel", **locals())
7916 7917 7918
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'affine_channel')
    check_type(scale, 'scale', (Variable, type(None)), 'affine_channel')
    check_type(bias, 'bias', (Variable, type(None)), 'affine_channel')
7919
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7920

7921 7922 7923 7924 7925 7926
    helper.append_op(
        type="affine_channel",
        inputs={"X": x, 'Scale': scale, 'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out},
    )
7927
    return helper.append_activation(out)
7928 7929


B
barrierye 已提交
7930
def similarity_focus(input, axis, indexes, name=None):
7931
    r"""
B
barrierye 已提交
7932
    SimilarityFocus Operator
B
barrierye 已提交
7933 7934

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
7935

7936 7937 7938
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
7939
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
7940 7941 7942 7943 7944 7945 7946
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
7947
       each index.
B
barrierye 已提交
7948 7949 7950 7951
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8001
    Args:
8002
        input(Variable): The input tensor variable(default float). It should
8003
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is
Y
Yibing Liu 已提交
8004
            float32 or float64.
B
barrierye 已提交
8005
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8006
            1, 2 or 3.
B
barrierye 已提交
8007
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8008 8009

    Returns:
H
haowang101779990 已提交
8010 8011
        Variable: A tensor variable with the same shape and same type \
                  as the input.
8012

B
barrierye 已提交
8013 8014
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
8015

8016
            import paddle.fluid as fluid
8017 8018
            import paddle
            paddle.enable_static()
Y
Yibing Liu 已提交
8019
            data = fluid.data(
Y
Yibing Liu 已提交
8020 8021
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8022 8023 8024
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
8025 8026 8027
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], "similarity_focus"
    )
8028 8029
    check_type(axis, 'axis', int, "similarity_focus")
    check_type(indexes, 'indexes', list, "similarity_focus")
B
barrierye 已提交
8030 8031 8032 8033 8034
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

8035
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
8036 8037 8038 8039 8040 8041
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis, "indexes": indexes},
    )
B
barrierye 已提交
8042
    return out
B
barrierye 已提交
8043 8044


M
minqiyang 已提交
8045 8046
def hash(input, hash_size, num_hash=1, name=None):
    """
8047

Z
zhupengyang 已提交
8048
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
8049 8050
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8051 8052

    Args:
Z
zhupengyang 已提交
8053 8054 8055 8056 8057 8058
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
8059 8060

    Returns:
Z
zhupengyang 已提交
8061
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
8062 8063

    Examples:
Z
zhupengyang 已提交
8064
        .. code-block:: python
H
haowang101779990 已提交
8065

8066
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8067
            import numpy as np
8068 8069
            import paddle
            paddle.enable_static()
8070

Z
zhupengyang 已提交
8071
            place = fluid.core.CPUPlace()
8072

8073 8074
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
8075

Z
zhupengyang 已提交
8076 8077 8078 8079
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
8080
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
8091
    """
8092
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
8093 8094
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
8095
    helper = LayerHelper('hash', **locals())
8096 8097 8098 8099 8100 8101 8102 8103 8104
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
8105
    return out
G
gmcather 已提交
8106 8107


D
dengkaipeng 已提交
8108
@templatedoc()
8109 8110
def grid_sampler(x, grid, name=None):
    """
8111

8112
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
8113
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
8114 8115
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
8116 8117
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
8118
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
8119
    shape will be [N, C, H, W].
8120

H
haowang101779990 已提交
8121
    .. code-block:: text
8122

H
haowang101779990 已提交
8123 8124
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
8125

K
Kaipeng Deng 已提交
8126 8127 8128 8129
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
8130

H
haowang101779990 已提交
8131 8132 8133
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
8134

H
haowang101779990 已提交
8135 8136 8137 8138 8139 8140 8141 8142 8143
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
8144

H
haowang101779990 已提交
8145 8146 8147 8148
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
8149

H
haowang101779990 已提交
8150 8151 8152 8153
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
8154

H
haowang101779990 已提交
8155 8156 8157 8158
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
8159

H
haowang101779990 已提交
8160 8161
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8162 8163

    Args:
K
Kaipeng Deng 已提交
8164 8165 8166 8167 8168 8169 8170 8171 8172
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
8173 8174

    Returns:
H
haowang101779990 已提交
8175
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
8176 8177
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
8178

H
haowang101779990 已提交
8179 8180 8181 8182
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
8183
            import paddle.fluid as fluid
8184 8185
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
8186

8187
            paddle.enable_static()
K
Kaipeng Deng 已提交
8188 8189
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
8190 8191
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
8192
            out = fluid.layers.grid_sampler(x=x, grid=grid)
8193

D
dengkaipeng 已提交
8194 8195 8196
    """
    helper = LayerHelper("grid_sampler", **locals())

8197
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
8198 8199 8200
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
8201 8202 8203 8204 8205 8206
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8207
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8208 8209
    ipts = {'X': x, 'Grid': grid}

8210 8211
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

8212 8213 8214
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
8215 8216 8217
    return out


G
gmcather 已提交
8218
def log_loss(input, label, epsilon=1e-4, name=None):
8219
    r"""
8220

G
gmcather 已提交
8221 8222 8223 8224 8225 8226 8227
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

8228 8229
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
8230 8231

    Args:
8232
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
8233
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
8234
                                by the previous operator. Data type float32.
8235
        label (Tensor|list):  The ground truth which is a 2-D tensor with
8236
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
8237 8238
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
8239
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
8240
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
8241 8242

    Returns:
8243
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
8244 8245 8246 8247

    Examples:
        .. code-block:: python

8248 8249 8250 8251 8252 8253
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
8254
    """
8255
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
8256 8257 8258


def add_position_encoding(input, alpha, beta, name=None):
8259
    r"""
8260

G
Guo Sheng 已提交
8261 8262
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
8263

8264
    For more details of position encoding, please refer to `Attention Is All You
G
Guo Sheng 已提交
8265
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
8266

G
Guo Sheng 已提交
8267
    The formula is as follows:
G
gmcather 已提交
8268 8269

    .. math::
H
haowang101779990 已提交
8270 8271 8272
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
8273 8274

    Where:
G
Guo Sheng 已提交
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
8289 8290
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
G
Guo Sheng 已提交
8291
            None by default.
G
gmcather 已提交
8292 8293

    Returns:
G
Guo Sheng 已提交
8294
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
8295 8296 8297 8298

    Examples:
        .. code-block:: python

8299
          import paddle
8300

8301
          tensor = paddle.randn([16, 32, 64])
8302
          position_tensor = paddle.fluid.layers.add_position_encoding(
8303
                input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
8304

G
gmcather 已提交
8305
    """
J
Jiabin Yang 已提交
8306
    if _non_static_mode():
8307 8308 8309
        return _legacy_C_ops.add_position_encoding(
            input, "alpha", alpha, "beta", beta
        )
8310

G
gmcather 已提交
8311
    helper = LayerHelper('add_position_encoding', **locals())
8312 8313 8314
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], "add_position_encoding"
    )
G
gmcather 已提交
8315 8316
    dtype = helper.input_dtype()

8317
    out = helper.create_variable_for_type_inference(dtype=dtype)
G
gmcather 已提交
8318

8319 8320 8321 8322 8323 8324
    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha, "beta": beta},
    )
G
gmcather 已提交
8325
    return out
Q
Qiao Longfei 已提交
8326 8327


8328 8329 8330
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
8331
    r"""
8332 8333
    :api_attr: Static Graph

Y
Yibing Liu 已提交
8334
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8335

Q
Qiao Longfei 已提交
8336
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8337 8338 8339
    For example:

    .. math::
H
haowang101779990 已提交
8340
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8341

Q
Qiao Longfei 已提交
8342
    In this formula:
8343 8344
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
8345
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
8346
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8347 8348 8349
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8350
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
8351
            is float32 or float64.
8352
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
8353
            should be same as **x**.
Q
Qiao Longfei 已提交
8354
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
8355
        act (str|None): Activation to be applied to the output of this layer. Default None.
8356
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
8357
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
8358 8359
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
8360
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
8361 8362
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
8363
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
8364
    Returns:
Y
Yibing Liu 已提交
8365
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
8366 8367 8368 8369

    Examples:
        .. code-block:: python

8370 8371 8372 8373 8374
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8375 8376
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8377
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8378 8379 8380

    param_shape = [size, x.shape[1], y.shape[1]]

8381 8382 8383
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
8384
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
8385 8386 8387 8388

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
8389 8390 8391
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
8392
        inputs["Bias"] = bias
8393 8394 8395
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
8396 8397 8398

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
8399 8400 8401 8402 8403


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
8404 8405 8406 8407 8408 8409 8410 8411 8412
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

8413
        Output is LoDTensor:
8414 8415 8416 8417 8418 8419
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
8420 8421

    Args:
8422 8423 8424
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
8425 8426

    Returns:
8427
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
8428 8429 8430

    Examples:
        .. code-block:: python
8431

B
bdzhuxiaoning 已提交
8432 8433 8434 8435
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
8436 8437
    """

8438 8439 8440 8441 8442
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
8443 8444
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8445 8446 8447 8448 8449 8450
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
8451
    return out
8452 8453


8454
@templatedoc()
8455
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
8456
    """
8457

8458
    **Temporal Shift Operator**
8459

8460
    ${comment}
8461 8462

    Args:
8463
        x(Tensor): ${x_comment}
8464
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
8465
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
8466 8467 8468
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
8469 8470
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
8471 8472

    Returns:
8473
        out(Tensor): The temporal shifting result is a tensor with the
K
Kaipeng Deng 已提交
8474
        same shape and same data type as the input.
8475 8476 8477 8478 8479 8480 8481

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

8482 8483 8484 8485
            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
8486
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
8487
    """
8488 8489 8490
    return paddle.nn.functional.temporal_shift(
        x, seg_num, shift_ratio, name, data_format
    )
8491 8492


8493
class PyFuncRegistry:
S
sneaxiy 已提交
8494 8495 8496
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
8497
        if func is None or not callable(func):
S
sneaxiy 已提交
8498 8499 8500
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
8501
        # find named args using reflection
8502
        args = inspect.getfullargspec(self._func)
S
sneaxiy 已提交
8503 8504 8505 8506 8507 8508
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
8509 8510 8511
        '''
        Why record self here?

M
minqiyang 已提交
8512 8513
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
8514
           to find the registered function corresponding
M
minqiyang 已提交
8515
           to :code:`idx`.
S
sneaxiy 已提交
8516

M
minqiyang 已提交
8517 8518
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
8519
           whose reference count is 1 would cause
M
minqiyang 已提交
8520
           segmentation fault error in C++ side.
S
sneaxiy 已提交
8521 8522
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
8523
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
8538 8539 8540 8541 8542 8543 8544 8545 8546
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
8547

S
sneaxiy 已提交
8548
        if not isinstance(func_ret, (list, tuple)):
8549
            func_ret = (func_ret,)
S
sneaxiy 已提交
8550 8551

        ret = []
S
sneaxiy 已提交
8552 8553 8554
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
8555 8556
                continue

S
sneaxiy 已提交
8557 8558
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
8559

S
sneaxiy 已提交
8560 8561 8562
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
8563

S
sneaxiy 已提交
8564
        return tuple(ret)
S
sneaxiy 已提交
8565 8566


8567
@static_only
S
sneaxiy 已提交
8568 8569 8570
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
8571 8572
    :api_attr: Static Graph

8573 8574
    This OP is used to register customized Python OP to Paddle. The design
    principe of py_func is that Tensor and numpy array can be converted to each
8575 8576
    other easily. So you can use Python and numpy API to register a python OP.

8577 8578
    The forward function of the registered OP is ``func`` and the backward function
    of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
8579
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None).
8580 8581
    ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
    the output of ``func``, whose type can be either Tensor or numpy array.
8582

8583
    The input of the backward function ``backward_func`` is ``x``, ``out`` and
8584 8585 8586
    the gradient of ``out``. If ``out`` have no gradient, the relevant input of
    ``backward_func`` is None. If ``x`` do not have a gradient, the user should
    return None in ``backward_func``.
8587

8588 8589
    The data type and shape of ``out`` should also be set correctly before this
    API is called, and the data type and shape of the gradient of ``out`` and
8590 8591 8592 8593 8594 8595 8596
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
8597 8598
            is running, the forward output ``out`` will be calculated according to this
            function and the forward input ``x``. In ``func`` , it's suggested that we
8599
            actively convert Tensor into a numpy array, so that we can use Python and
8600
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
8601 8602 8603 8604 8605 8606 8607
        x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``.
            It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor
            should be passed in the form of tuple(Tensor) or list[Tensor].
        out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be
            T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle
            cannot automatically infer the shape and type of ``out``, you must create
            ``out`` in advance.
8608 8609 8610
        backward_func (callable, optional): The backward function of the registered OP.
            Its default value is None, which means there is no reverse calculation. If
            it is not None, ``backward_func`` is called to calculate the gradient of
8611
            ``x`` when the network is at backward runtime.
8612 8613
        skip_vars_in_backward_input (Tensor, optional): It's used to limit the input
            list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor].
8614
            It must belong to either ``x`` or ``out``. The default  value is None, which means
8615 8616
            that no tensors need to be removed from ``x`` and ``out``. If it is not None,
            these tensors will not be the input of ``backward_func``. This parameter is only
8617
            useful when ``backward_func`` is not None.
8618 8619

    Returns:
8620
        Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
8621 8622

    Examples:
8623
        .. code-block:: python
8624

8625
            # example 1:
8626
            import paddle
8627
            import numpy as np
8628

8629 8630 8631
            paddle.enable_static()

            # Creates a forward function, Tensor can be input directly without
8632
            # being converted into numpy array.
8633 8634 8635
            def tanh(x):
                return np.tanh(x)

8636
            # Skip x in backward function and return the gradient of x
8637
            # Tensor must be actively converted to numpy array, otherwise,
8638
            # operations such as +/- can't be used.
8639 8640
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
8641

8642
            # Creates a forward function for debugging running networks(print value)
8643 8644
            def debug_func(x):
                print(x)
8645

8646
            def create_tmp_var(name, dtype, shape):
8647
                return paddle.static.default_main_program().current_block().create_var(
8648
                    name=name, dtype=dtype, shape=shape)
8649 8650 8651

            def simple_net(img, label):
                hidden = img
8652
                for idx in range(4):
8653
                    hidden = paddle.static.nn.fc(hidden, size=200)
8654 8655 8656
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

8657
                    # User-defined forward and backward
8658
                    hidden = paddle.static.py_func(func=tanh, x=hidden,
8659 8660 8661
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

8662
                    # User-defined debug functions that print out the input Tensor
8663
                    paddle.static.py_func(func=debug_func, x=hidden, out=None)
8664

8665
                prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax')
8666 8667 8668 8669
                ce_loss = paddle.nn.loss.CrossEntropyLoss()
                return ce_loss(prediction, label)

            x = paddle.static.data(name='x', shape=[1,4], dtype='float32')
8670
            y = paddle.static.data(name='y', shape=[1], dtype='int64')
8671 8672 8673 8674 8675
            res = simple_net(x, y)

            exe = paddle.static.Executor(paddle.CPUPlace())
            exe.run(paddle.static.default_startup_program())
            input1 = np.random.random(size=[1,4]).astype('float32')
8676
            input2 = np.random.randint(1, 10, size=[1], dtype='int64')
8677 8678 8679 8680 8681 8682
            out = exe.run(paddle.static.default_main_program(),
                          feed={'x':input1, 'y':input2},
                          fetch_list=[res.name])
            print(out)

        .. code-block:: python
8683

8684
            # example 2:
8685
            # This example shows how to turn Tensor into numpy array and
8686
            # use numpy API to register an Python OP
8687
            import paddle
8688 8689
            import numpy as np

8690 8691
            paddle.enable_static()

8692
            def element_wise_add(x, y):
8693
                # Tensor must be actively converted to numpy array, otherwise,
8694
                # numpy.shape can't be used.
8695
                x = np.array(x)
8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
8709
                return paddle.static.default_main_program().current_block().create_var(
8710 8711 8712
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
8713 8714
                start_program = paddle.static.default_startup_program()
                main_program = paddle.static.default_main_program()
8715 8716

                # Input of the forward function
8717 8718
                x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
                y = paddle.static.data(name='y', shape=[2,3], dtype='int32')
8719

8720 8721 8722 8723
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
8724
                paddle.static.py_func(func=element_wise_add, x=[x,y], out=output)
8725

8726
                exe=paddle.static.Executor(paddle.CPUPlace())
8727 8728 8729 8730 8731
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
8732
                out = exe.run(main_program,
8733 8734 8735 8736 8737 8738 8739 8740 8741
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
8742
    """
S
sneaxiy 已提交
8743
    helper = LayerHelper('py_func', **locals())
8744
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
8745 8746 8747
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
8748
        x = [x]
8749 8750 8751
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
8752
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
8753
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
8754 8755 8756
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
8757
        out_list = [out]
8758 8759
    elif isinstance(out, tuple):
        out_list = list(out)
8760 8761 8762
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
8763
        raise TypeError(
8764 8765
            'Output must be Variable/list(Variable)/tuple(Variable)'
        )
S
sneaxiy 已提交
8766

S
sneaxiy 已提交
8767
    fwd_func_id = PyFuncRegistry(func).id
8768 8769 8770
    bwd_func_id = (
        PyFuncRegistry(backward_func).id if backward_func is not None else -1
    )
S
sneaxiy 已提交
8771 8772

    for each_out in out_list:
S
sneaxiy 已提交
8773 8774
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
8775 8776
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
8777

S
sneaxiy 已提交
8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
8790 8791 8792 8793
                    'Variable {} is not found in forward inputs and outputs'.format(
                        v.name
                    )
                )
S
sneaxiy 已提交
8794
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
8795

8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
    helper.append_op(
        type='py_func',
        inputs={'X': x},
        outputs={'Out': out_list},
        attrs={
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars),
        },
    )
S
sneaxiy 已提交
8806
    return out
S
sneaxiy 已提交
8807 8808 8809


# For debug usage
S
sneaxiy 已提交
8810 8811 8812 8813
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


R
ruri 已提交
8814 8815 8816
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
8817
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
8818 8819 8820
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
8821
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution
R
ruri 已提交
8822 8823 8824
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
8825
    Parameters:
R
ruri 已提交
8826

R
ruri 已提交
8827 8828
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
8829 8830

    Returns:
8831
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
8832 8833 8834 8835 8836 8837 8838

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

8839 8840 8841 8842 8843 8844 8845 8846
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            input = fluid.data(name="input", shape=[2,9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
8847

8848 8849
            input_data = np.random.rand(2,9,4,4).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
8850 8851 8852
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
8853

8854 8855
            # print(output.shape)
            # (2L, 1L, 12L, 12L)
R
ruri 已提交
8856 8857 8858

    """

R
ruri 已提交
8859
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
8860 8861 8862 8863 8864 8865 8866
    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

8867 8868 8869 8870 8871 8872
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor},
    )
R
ruri 已提交
8873 8874 8875
    return out


8876 8877 8878 8879 8880
def fsp_matrix(x, y):
    """

    **FSP matrix op**

8881
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

8893 8894 8895
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
8896
                      The y_channel can be different with the x_channel of Input(X)
8897 8898
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
8899 8900 8901 8902

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
8903 8904
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
8905 8906 8907 8908 8909

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
8910
            import paddle.fluid as fluid
B
Bai Yifan 已提交
8911
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
8912 8913 8914 8915
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
8916 8917 8918
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
8919 8920
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fsp_matrix')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'fsp_matrix')
8921
    helper = LayerHelper('fsp_matrix', **locals())
8922 8923 8924
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(input_param_name='x')
    )
8925 8926
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
8927 8928 8929


def continuous_value_model(input, cvm, use_cvm=True):
8930
    r"""
H
fix doc  
heqiaozhi 已提交
8931

H
heqiaozhi 已提交
8932
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
8933

Z
zhoushiyu 已提交
8934
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
8935

Z
zhoushiyu 已提交
8936 8937
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
8938
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
8939 8940
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
8941

Z
zhoushiyu 已提交
8942 8943 8944 8945 8946 8947 8948
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
8949

H
heqiaozhi 已提交
8950
    Returns:
H
fix doc  
heqiaozhi 已提交
8951

Z
zhoushiyu 已提交
8952 8953
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
8954

H
heqiaozhi 已提交
8955
    Examples:
H
fix doc  
heqiaozhi 已提交
8956

H
heqiaozhi 已提交
8957
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
8958

8959
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
8960 8961
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
8962 8963 8964 8965 8966 8967 8968 8969
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
8970

H
heqiaozhi 已提交
8971 8972 8973
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
8974 8975 8976 8977 8978 8979 8980 8981 8982
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
8983
    return out
Z
zhoukunsheng 已提交
8984 8985 8986 8987 8988 8989 8990


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
8991
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
8992 8993

    Returns:
8994
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate.
Z
zhoukunsheng 已提交
8995 8996 8997 8998

    Examples:
        .. code-block:: python

8999
             import paddle.fluid as fluid
9000 9001 9002
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
9003
             # condition is a tensor [True, False, True]
9004 9005 9006
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
9007 9008

             # condition is a tensor [[True, False], [False, True]]
9009 9010 9011
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
9012 9013

             # condition is a tensor [False, False, False]
9014 9015 9016 9017
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
9018
    """
H
hong 已提交
9019 9020

    if in_dygraph_mode():
9021
        return _C_ops.nonzero(condition)
9022 9023
    if _in_legacy_dygraph():
        return _legacy_C_ops.where_index(condition)
9024

W
wanghuancoder 已提交
9025 9026
    helper = LayerHelper("where_index", **locals())

Z
zhoukunsheng 已提交
9027
    out = helper.create_variable_for_type_inference(
9028 9029 9030 9031 9032 9033 9034 9035
        dtype=core.VarDesc.VarType.INT64
    )

    helper.append_op(
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]},
    )
Z
zhoukunsheng 已提交
9036
    return out
Z
zhoukunsheng 已提交
9037 9038


W
WangXi 已提交
9039
@deprecated(since="2.0.0", update_to="paddle.sign")
Z
zhoukunsheng 已提交
9040
def sign(x):
9041
    r"""
9042
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
9043 9044

    Args:
9045 9046
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
9047 9048

    Returns:
9049
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
9050 9051 9052 9053

    Examples:
        .. code-block:: python

9054 9055 9056
          import paddle.fluid as fluid
          import numpy as np

9057
          # [1.0, 0.0, -1.0]
9058
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32'))
Z
zhoukunsheng 已提交
9059 9060 9061
    """

    helper = LayerHelper("sign", **locals())
9062 9063 9064 9065
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
9066 9067 9068 9069 9070
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
9071 9072


Z
zhoukunsheng 已提交
9073
def unique(x, dtype='int32'):
9074
    r"""
Z
zhoukunsheng 已提交
9075 9076 9077
    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
Z
Zhang Ting 已提交
9078 9079
        x(Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The type of index tensor: int32, int64. Default: int32.
Z
zhoukunsheng 已提交
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
W
wawltor 已提交
9090
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
Z
zhoukunsheng 已提交
9091 9092 9093
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

9094 9095 9096
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique"
    )
Z
zhoukunsheng 已提交
9097 9098 9099 9100 9101 9102
    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

9103 9104 9105 9106 9107 9108
    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index]},
    )
Z
zhoukunsheng 已提交
9109 9110 9111 9112

    return out, index


9113
def unique_with_counts(x, dtype='int32'):
9114
    r"""
T
tianshuo78520a 已提交
9115
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
9116
    and an index tensor pointing to this unique tensor.
9117

9118
    **NOTICE**: This op support the variable type of Tensor only.
9119 9120

    Args:
9121
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
9122
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Default value is int32.
9123

9124
    Returns:
9125 9126 9127
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
9128
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
9129
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
9130 9131 9132 9133 9134 9135 9136 9137 9138

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
9139
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
9140
    """
9141 9142 9143
    check_variable_and_dtype(
        x, "x", ['float32', 'float64', 'int32', 'int64'], "unique_with_counts"
    )
9144 9145
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
9146 9147
            "Op unique_with_counts, index dtype must be int32 or int64"
        )
9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

9162 9163 9164 9165 9166 9167
    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out], 'Index': [index], 'Count': [count]},
    )
9168 9169 9170 9171

    return out, index, count


9172
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
9173
    r"""
9174

S
SunGaofeng 已提交
9175
    This op returns a col buffer of sliding local blocks of input x, also known
9176
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
9177
    all element will be rearranged as a column. While the convolution filter sliding over
9178 9179
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
9180
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
9181 9182 9183 9184
    can be calculated as following.

    .. math::

9185
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
9186

9187
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
9188

9189
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
9190

9191
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
9192

9193
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
9194

9195
        Lout &= hout \times wout
9196 9197


S
SunGaofeng 已提交
9198
    Parameters:
9199
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
9200
                                  data type can be float32 or float64
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
9213
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
9214
                                  [dilation_h, dilation_w], or an integer dilation treated as
9215
                                  [dilation, dilation]. For default, it will be [1, 1].
9216 9217
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
9218
                             For more information, please refer to :ref:`api_guide_Name`
9219

9220

9221
    Returns:
9222
        The tensor corresponding to the sliding local blocks.
9223 9224 9225
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
9226 9227 9228
        The data type of output is the same as the input :math:`x`

    Return Type:
9229
        Tensor
9230 9231 9232 9233 9234

    Examples:

        .. code-block:: python

9235 9236 9237 9238 9239
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
9240 9241
    """

9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
9262
    r"""
9263

9264
    Deformable ROI Pooling Layer
9265

9266
    Performs deformable region-of-interest pooling on inputs. As described
9267
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
9268
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
9269

9270
    The operation has three steps:
9271

9272
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
9273

9274 9275
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
9276

9277
    3. Sample several points in each bin to get average values as output.
9278 9279


9280 9281 9282 9283 9284 9285 9286 9287 9288
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
9289 9290 9291
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
9292 9293 9294 9295
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
9296
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
9297
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
9298
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
9299 9300 9301 9302 9303 9304 9305
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
9306
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
9307 9308 9309 9310
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
9311 9312 9313 9314

    Examples:
      .. code-block:: python

9315 9316
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
9317
        input = fluid.data(name="input",
9318 9319
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
9320 9321
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
9322
                          dtype='float32',
C
chengjuntao 已提交
9323 9324
                          lod_level=1)
        trans = fluid.data(name="trans",
9325 9326 9327 9328 9329
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
9330
                                                no_trans=False,
9331
                                                spatial_scale=1.0,
C
chengjuntao 已提交
9332 9333 9334 9335
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
9336
                                                sample_per_part=4,
C
chengjuntao 已提交
9337 9338
                                                trans_std=0.1,
                                                position_sensitive=True)
9339

9340
        # position_sensitive=False
9341
        import paddle.fluid as fluid
C
chengjuntao 已提交
9342
        input = fluid.data(name="input",
9343 9344
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
9345 9346
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
9347
                          dtype='float32',
C
chengjuntao 已提交
9348 9349
                          lod_level=1)
        trans = fluid.data(name="trans",
9350 9351 9352 9353 9354
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
9355
                                                no_trans=False,
9356
                                                spatial_scale=1.0,
C
chengjuntao 已提交
9357 9358 9359 9360
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
9361
                                                sample_per_part=4,
C
chengjuntao 已提交
9362 9363
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
9364 9365
    """

9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
9378
    if part_size is not None:
9379 9380 9381
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
9382

C
cjt222 已提交
9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398
    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
9415
    return output
9416 9417


9418
@deprecated(since="2.0.0", update_to="paddle.shard_index")
9419 9420
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
9421 9422 9423 9424 9425 9426 9427 9428 9429
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
9430 9431
    ::

9432
        shard_size = (index_num + nshards - 1) // nshards
9433

L
lilong12 已提交
9434 9435 9436
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
9437

L
lilong12 已提交
9438 9439 9440 9441
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
9442 9443

    Args:
L
lilong12 已提交
9444 9445
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
9446 9447 9448
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
9449 9450

    Returns:
L
lilong12 已提交
9451
        Tensor.
9452 9453 9454 9455

    Examples:
        .. code-block:: python

9456 9457 9458 9459 9460 9461 9462 9463
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
9464
    """
H
hong 已提交
9465
    if in_dygraph_mode():
9466 9467 9468
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
9469

B
Baibaifan 已提交
9470
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
9471 9472 9473
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
9474 9475 9476
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
9477 9478

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
9491
    return out
H
huangjun12 已提交
9492 9493 9494 9495


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
9496
    r"""
9497 9498 9499
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
9500

9501
    The formula is as follows:
H
huangjun12 已提交
9502

9503
    .. math::
H
huangjun12 已提交
9504

9505
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
9506

9507 9508 9509 9510 9511 9512 9513 9514 9515
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
9516 9517
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9518 9519
    Returns:
        Variable: The output tensor with the same shape and data type as input.
9520 9521


9522
    Examples:
9523

9524
    .. code-block:: python
9525

9526
        import paddle.fluid as fluid
9527
        import paddle
9528
        import numpy as np
9529
        paddle.enable_static()
9530

9531
        DATATYPE='float32'
9532

9533
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
9534

9535 9536
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
9537

9538 9539 9540 9541 9542
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
9543
    """
J
Jiabin Yang 已提交
9544
    if _non_static_mode():
9545 9546 9547
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
9548

9549 9550 9551
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
9552

H
huangjun12 已提交
9553 9554
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9555 9556 9557 9558 9559 9560
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
9561
    return out
R
ruri 已提交
9562 9563


K
Kaipeng Deng 已提交
9564 9565
@templatedoc()
def mish(x, threshold=20, name=None):
9566
    r"""
K
Kaipeng Deng 已提交
9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

	out = \\begin{cases}
		x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
		x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
		x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
	      \\end{cases}

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
9624
    if in_dygraph_mode():
9625
        return _C_ops.mish(x, threshold)
9626
    if _in_legacy_dygraph():
9627
        return _legacy_C_ops.mish(x, 'threshold', threshold)
9628

K
Kaipeng Deng 已提交
9629 9630
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
9631 9632 9633 9634 9635
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
9636 9637 9638

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9639 9640 9641 9642 9643 9644
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
9645 9646 9647
    return out


G
Guo Sheng 已提交
9648
def gather_tree(ids, parents):
9649
    r"""
G
Guo Sheng 已提交
9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

9674 9675
            Then:
                gather_tree(ids, parents)
G
Guo Sheng 已提交
9676 9677 9678 9679 9680 9681 9682 9683
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
L
liu zhengxi 已提交
9684
        ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]`
G
Guo Sheng 已提交
9685 9686
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
L
liu zhengxi 已提交
9687
        parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`,
G
Guo Sheng 已提交
9688 9689 9690 9691
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
L
liu zhengxi 已提交
9692
            A Tensor with the same shape and data type as :attr:`ids`. \
G
Guo Sheng 已提交
9693 9694 9695 9696 9697 9698
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

L
liu zhengxi 已提交
9699 9700 9701 9702 9703 9704 9705 9706
            import paddle

            ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])

            parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])

            final_sequences = paddle.nn.functional.gather_tree(ids, parents)
            # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]
G
Guo Sheng 已提交
9707 9708

    """
9709
    return paddle.nn.functional.gather_tree(ids, parents)
G
Guo Sheng 已提交
9710 9711


9712
@deprecated(since="2.0.0", update_to="paddle.uniform")
9713
@templatedoc()
9714 9715 9716
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
9717
    """
9718 9719
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
9720 9721 9722

    Examples:
    ::
9723

9724 9725
        Input:
          shape = [1, 2]
9726

9727 9728 9729 9730
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
9744 9745
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
9746
            time. Default is 0.
9747 9748 9749
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
9750

9751
    Returns:
9752 9753
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
9754

9755
    Raises:
9756 9757
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
9758

9759 9760 9761
    Examples:
        .. code-block:: python

9762
            import paddle
9763
            import paddle.fluid as fluid
9764
            paddle.enable_static()
9765 9766

            # example 1:
9767
            # attr shape is a list which doesn't contain Tensor.
9768
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
9769 9770 9771
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
9772 9773

            # example 2:
9774 9775 9776
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
9777
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
9778 9779
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
9780 9781

            # example 3:
9782
            # attr shape is a Tensor, the data type must be int64 or int32.
9783
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
9784
            result_3 = fluid.layers.uniform_random(var_shape)
9785 9786 9787 9788
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
9789

9790 9791 9792
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
9793

9794 9795
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
9796
        return _C_ops.uniform(
9797 9798 9799 9800 9801 9802 9803
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
9804
    elif _in_legacy_dygraph():
9805
        shape = utils.convert_shape_to_list(shape)
9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
9818

9819
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
9820 9821 9822
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
9823 9824
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
9825 9826

    inputs = dict()
9827
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
9828 9829 9830
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
9831

9832
    helper = LayerHelper("uniform_random", **locals())
9833
    out = helper.create_variable_for_type_inference(dtype)
9834 9835 9836
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
9837
    utils.try_set_static_shape_tensor(out, shape)
9838
    return out
myq406450149's avatar
myq406450149 已提交
9839 9840 9841 9842 9843 9844 9845


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
9846

myq406450149's avatar
myq406450149 已提交
9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
9872 9873 9874
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
9875
    if not isinstance(axis, (int)):
9876 9877 9878
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
9879 9880 9881 9882 9883 9884 9885 9886 9887 9888
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

9889 9890 9891 9892 9893 9894
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
9895
    return outs