bmm_op_xpu.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_XPU

#include <string>
#include <vector>

20
#include "paddle/fluid/operators/matmul_v2_op.h"
21 22 23 24 25 26 27
#include "paddle/fluid/operators/xpu_api_wrapper.h"
#include "paddle/fluid/platform/device/device_wrapper.h"

namespace paddle {
namespace operators {

template <typename T, typename FCT>
28 29 30 31 32
static void MatMulXPUFunction(const Tensor* x,
                              const Tensor* y,
                              Tensor* out,
                              bool trans_x,
                              bool trans_y,
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                              const paddle::framework::ExecutionContext& ctx) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  const auto& x_dims = x->dims();
  const auto& y_dims = y->dims();
  auto& dev_ctx =
      ctx.template device_context<paddle::platform::XPUDeviceContext>();

  auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(
      RowMatrixFromVector(x_dims), 0, trans_x);
  auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(
      ColumnMatrixFromVector(y_dims), 0, trans_y);

  T* data_c = out->data<T>();
  int m = mat_dim_a.height_;
  int n = mat_dim_b.width_;
  int k = mat_dim_a.width_;
  int batch_size = mat_dim_a.batch_size_;
  // batch matmul
  int r = xpu::fc_batched<XPUType, XPUType, XPUType, FCT>(
      dev_ctx.x_context(),                             // Context* ctx,
      batch_size,                                      // int batch_size,
      mat_dim_a.trans_,                                // bool x_trans,
      mat_dim_b.trans_,                                // bool w_trans,
      m,                                               // int m,
      n,                                               // int n,
      k,                                               // int k,
      1.0,                                             // float alpha,
      reinterpret_cast<const XPUType*>(x->data<T>()),  // const TX* x,
      mat_dim_a.stride_,                               // int stride_a,
      reinterpret_cast<const XPUType*>(y->data<T>()),  // const TW* w,
      mat_dim_b.stride_,                               // int stride_b,
      0.0,                                             // float beta,
      reinterpret_cast<XPUType*>(data_c),              // TY* y,
      m * n,                                           // int stride_c,
      nullptr,                                         // const float* x_maxptr,
      nullptr);                                        // const float* w_maxptr

  PADDLE_ENFORCE_XDNN_SUCCESS(r, "fc_batched");
}

template <typename T>
class BmmXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    if (x->numel() == 0 || y->numel() == 0) {
      return;
    }
    bool trans_x = false;
    bool trans_y = false;

    auto x_dims = x->dims();
    auto y_dims = y->dims();

91 92
    PADDLE_ENFORCE_EQ(x_dims.size(),
                      3,
93 94 95 96
                      platform::errors::InvalidArgument(
                          "Input(X) of BmmOp must be 3-dimensional in BmmOp, "
                          "but received X's shape: [%s].",
                          x_dims));
97 98
    PADDLE_ENFORCE_EQ(y_dims.size(),
                      3,
99 100 101 102 103
                      platform::errors::InvalidArgument(
                          "Input(Y) of BmmOp must be 3-dimensional in BmmOp, "
                          "but received Y's shape: [%s].",
                          y_dims));
    PADDLE_ENFORCE_EQ(
104 105
        x_dims[0],
        y_dims[0],
106 107 108 109
        platform::errors::InvalidArgument(
            "Input(X) and Input(Y) must have the same batch size in BmmOp, "
            "but received X's batch size: [%s],"
            "Y's batch size [%s]",
110 111
            x_dims[0],
            y_dims[0]));
112
    PADDLE_ENFORCE_EQ(
113 114
        x_dims[2],
        y_dims[1],
115 116 117 118
        platform::errors::InvalidArgument(
            "Input(X)'s width must be equal with Input(Y)'s height in BmmOp,"
            "but receive X's width: [%s],"
            "Y's height: [%s].",
119 120
            x_dims[2],
            y_dims[1]));
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    if (std::is_same<paddle::platform::float16, T>::value) {
      MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, ctx);
    } else {
      if (std::getenv("XPU_PADDLE_FC_INT32") != nullptr) {
        MatMulXPUFunction<T, int32_t>(x, y, out, trans_x, trans_y, ctx);
      } else if (std::getenv("XPU_PADDLE_FC_LOCAL_INT16") != nullptr) {
        MatMulXPUFunction<T, float>(x, y, out, trans_x, trans_y, ctx);
      } else {
        MatMulXPUFunction<T, int16_t>(x, y, out, trans_x, trans_y, ctx);
      }
    }
  }
};

template <typename T>
class BmmXPUGradKernel : public framework::OpKernel<T> {
 public:
  void MatMul(const framework::ExecutionContext& ctx,
140 141 142 143
              const framework::Tensor& a,
              bool trans_a,
              const framework::Tensor& b,
              bool trans_b,
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
              framework::Tensor* out) const {
    out->mutable_data<T>(ctx.GetPlace());
    if (std::is_same<paddle::platform::float16, T>::value) {
      MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, ctx);
    } else {
      if (std::getenv("XPU_PADDLE_FC_INT32") != nullptr) {
        MatMulXPUFunction<T, int32_t>(&a, &b, out, trans_a, trans_b, ctx);
      } else if (std::getenv("XPU_PADDLE_FC_LOCAL_INT16") != nullptr) {
        MatMulXPUFunction<T, float>(&a, &b, out, trans_a, trans_b, ctx);
      } else {
        MatMulXPUFunction<T, int16_t>(&a, &b, out, trans_a, trans_b, ctx);
      }
    }
  }

  void CalcInputGrad(const framework::ExecutionContext& context,
160 161 162 163
                     const framework::Tensor& a,
                     bool trans_a,
                     const framework::Tensor& b,
                     bool trans_b,
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                     framework::Tensor* out) const {
    if (out == nullptr) return;
    MatMul(context, a, trans_a, b, trans_b, out);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    auto x = *context.Input<framework::Tensor>("X");
    auto y = *context.Input<framework::Tensor>("Y");
    auto dout =
        *context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = context.Output<framework::Tensor>(framework::GradVarName("Y"));
    ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, false, false);

    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    CalcInputGrad(context, dout, false, y, true, dx);
    CalcInputGrad(context, x, true, dout, false, dy);

    // CalcInputGrad(context, dout, false, false, y, true, false, dx);
    // CalcInputGrad(context, x, true, true, dout, false, true, dy);

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }

    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
219 220
REGISTER_OP_XPU_KERNEL(bmm,
                       ops::BmmXPUKernel<float>,
221
                       ops::BmmXPUKernel<plat::float16>);
222 223
REGISTER_OP_XPU_KERNEL(bmm_grad,
                       ops::BmmXPUGradKernel<float>,
224 225 226
                       ops::BmmXPUGradKernel<plat::float16>);

#endif