inplace_op_pass.cc 16.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/inplace_op_pass.h"
#include <algorithm>
#include <deque>
#include <iterator>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
24
#include "paddle/fluid/framework/details/graph_print_pass.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/framework/ir/graph_helper.h"
D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/op_info.h"

// NOTE(dzhwinter): inplace means one op output variable reuse the input space.
// By our design, one operator only can read its input(const Variable),
// write its output(non-const Variable). If one operator is inplaced, means
// user have chance to write the space before reading happens.
// Especially when some optimize code writing style is applied.
//
//
// /* wrong case in operator */
// /*In this case, a larger allocation is allocated, input content is lost*/
// const Tensor* in = ctx.Input<Tensor>("In")
// Tensor* out = ctx.Output<Tensor>("Out");
// auto* out_ptr = out->mutable_data<T>(ctx.GetPlace());
// out_ptr[0] = 0;  // input contect is overwrited.

D
dzhwinter 已提交
43 44 45
// NOTE(dzhwinter):
// Only for backward compacity and stable. if enable_inplace_whitelist is turn
// on.
D
dzhwinter 已提交
46 47 48
// only the ops in whitelist will be use inplace strategy.
// if not, all the op will be inplaced if it registered with InplaceClass
DEFINE_bool(
D
dzhwinter 已提交
49
    enable_inplace_whitelist, false,
D
dzhwinter 已提交
50 51 52 53 54
    "If this option turns on, only these op in whitelist can be inplaced."
    "If it turns off, all of the running op can be candidate of inplaced op."
    "Such as scale, elementwise_add"
    "By default, it's turned on");

D
dzhwinter 已提交
55 56
DECLARE_string(memory_optimize_debug);

D
dzhwinter 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// clang-format off
const std::string kInplacedOpWhiteList[] = { // NOLINT
    "sigmoid",
    "exp",
    "relu",
    "tanh",
    "sqrt",
    "ceil",
    "floor",
    "reciprocal",
    "relu6",
    "soft_relu",
    "hard_sigmoid",
    "batch_norm",
    "batch_norm_grad",
    "sum",
    "sum_grad",
    "scale",
    "reshape",
    "elementwise_add",
    "elementwise_add_grad",
};
// clang-format on

namespace paddle {
namespace framework {
namespace details {

85
static inline ir::Node* GetNextCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
86 87 88 89
  // if next op is inplaced, then return the output var
  // otherwise return nullptr
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
  ir::Node* inplaced_var = nullptr;
90 91 92 93 94
  for (auto* next_op : var->outputs) {
    for (auto* output : next_op->outputs) {
      if (output->IsVar() && !output->IsCtrlVar() &&
          output->Name() == var->Name()) {
        inplaced_var = output;
D
dzhwinter 已提交
95 96 97 98 99 100
      }
    }
  }
  return inplaced_var;
}

101
static inline ir::Node* GetPrevCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
102
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
D
dzhwinter 已提交
103
  if (var->inputs.empty()) return nullptr;
104 105 106 107 108 109 110 111 112 113 114
  auto* prev_op = var->inputs.at(0);
  auto input_it = std::find_if(prev_op->inputs.begin(), prev_op->inputs.end(),
                               [&](ir::Node* node) {
                                 if (node->IsVar() && !node->IsCtrlVar() &&
                                     node->Name() == var->Name()) {
                                   return true;
                                 } else {
                                   return false;
                                 }
                               });
  return input_it == prev_op->inputs.end() ? nullptr : *input_it;
D
dzhwinter 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
}

template <typename Container>
static inline bool ConnectByCtrlVar(const Container& group1,
                                    const Container& group2) {
  bool connected = false;
  std::unordered_set<ir::Node*> outputs;
  for (auto* op : group1) {
    for (auto* var : op->outputs) {
      if (var->IsCtrlVar()) outputs.emplace(var);
    }
  }
  for (auto* op : group2) {
    for (auto* var : op->inputs) {
      if (outputs.count(var)) connected = true;
    }
  }
  return connected;
}

InplacePass::InplacePass() : Pass() {
  if (FLAGS_enable_inplace_whitelist) {
    for (auto& s : kInplacedOpWhiteList) {
      whitelist_.emplace(s);
    }
  }
}

void InplacePass::InitSSAGraphNodes() const {
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  for (auto* op : view_.AllOps()) {
    for (auto* node : op->inputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
    for (auto* node : op->outputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
  }
}

std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  var_nodes_.clear();
  view_.Build(graph.get());
  InitSSAGraphNodes();

  for (auto* op : view_.AllOps()) {
    if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
      continue;
    TryInplaceOpInputOutput(op, graph.get());
  }
  graph->ResolveHazard(var_nodes_);
175

D
dzhwinter 已提交
176 177 178 179 180 181 182
  return graph;
}

void InplacePass::InplaceModifyDesc(const std::string& var,
                                    const std::string& cache_var,
                                    const size_t& idx) const {
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
183
    ir::Node* op = view_.AllOps()[i];
D
dzhwinter 已提交
184 185 186 187 188 189 190 191 192
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
    if (op_desc->Block()->HasVar(var)) op_desc->Block()->RemoveVar(var);
    op_desc->Flush();
  }
}

D
dzhwinter 已提交
193 194 195 196
const SSANodePair InplacePass::TryInplaceModifyVar(const std::string& var,
                                                   const std::string& cache_var,
                                                   const size_t& idx,
                                                   ir::Graph* graph) const {
D
dzhwinter 已提交
197 198 199 200 201
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

D
dzhwinter 已提交
202 203
  SSANodePair swap_nodes;

D
dzhwinter 已提交
204 205 206 207 208 209 210
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
D
dzhwinter 已提交
211

D
dzhwinter 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }

D
dzhwinter 已提交
225
        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
226 227
      }
    }
D
dzhwinter 已提交
228 229 230

    // if we need to rename the output,
    // always create a newer version of cache_var
D
dzhwinter 已提交
231 232 233 234 235 236 237 238 239 240 241 242
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
D
dzhwinter 已提交
243 244

        swap_nodes.emplace_back(std::make_pair(node, cache_node));
D
dzhwinter 已提交
245 246 247
      }
    }
  }
D
dzhwinter 已提交
248

D
dzhwinter 已提交
249 250 251
  return swap_nodes;
}

D
dzhwinter 已提交
252
void InplacePass::CommitModify(const SSANodePair& swap_nodes,
D
dzhwinter 已提交
253 254
                               ir::Graph* graph) const {
  for (auto& pair : swap_nodes) {
D
dzhwinter 已提交
255 256 257 258
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    var_nodes_[cache_var].emplace_back(cache_node);
    graph->RemoveNode(node);
D
dzhwinter 已提交
259
    auto& nodes = var_nodes_.at(var);
D
dzhwinter 已提交
260 261 262
    // release unused var in graph. Because python side memory optimize
    // may reused the var in same name, so we only clear the var node
    // after current inplaced index.
D
dzhwinter 已提交
263 264 265 266
    nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
  }
}

D
dzhwinter 已提交
267
void InplacePass::WithdrawModify(const SSANodePair& nodes,
D
dzhwinter 已提交
268 269
                                 ir::Graph* graph) const {
  for (auto& pair : nodes) {
D
dzhwinter 已提交
270 271 272 273 274 275 276
    auto *node = pair.first, *cache_node = pair.second;
    const std::string var = node->Name(), cache_var = cache_node->Name();
    auto* prev_op = node->inputs[0];
    std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), cache_node,
                 node);
    for (auto* next_op : node->outputs) {
      std::replace(next_op->inputs.begin(), next_op->inputs.end(), cache_node,
D
dzhwinter 已提交
277
                   node);
D
dzhwinter 已提交
278
    }
D
dzhwinter 已提交
279
    graph->RemoveNode(cache_node);
D
dzhwinter 已提交
280 281 282 283 284
  }
}

void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
                                          ir::Graph* graph) const {
D
dzhwinter 已提交
285
  VLOG(4) << "Try to inplace op " << op->Name();
D
dzhwinter 已提交
286 287
  PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
                 "op_desc is nullptr");
D
dzhwinter 已提交
288
  // 4 pre-requirments need to meet if the op want to inplaced.
D
dzhwinter 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  // 1. infer_inplace_ is registered.
  auto* op_desc = op->Op();
  auto& infer_inplace =
      OpInfoMap::Instance().Get(op_desc->Type()).infer_inplace_;
  if (!static_cast<bool>(infer_inplace)) return;
  PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
                 "%s's infer_inplace has not been registered", op_desc->Type());

  auto* block = op_desc->Block();
  auto in_to_outs = infer_inplace(*op_desc, block);

  auto& all_ops = view_.AllOps();
  auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
  size_t idx = std::distance(all_ops.begin(), cursor);

  for (auto& pair : in_to_outs) {
    auto& in_var_name = pair.first;
    auto& out_var_name = pair.second;
    auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
    auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
D
dzhwinter 已提交
309

D
dzhwinter 已提交
310 311
    // 2. there is no external pending op on the input node
    if (view_.PendingOpsOnVar(in_node).size() > 1) {
D
dzhwinter 已提交
312 313 314 315
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input has external dependency."
          "inplace such pair will overwrite the memory.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
316 317
      continue;
    }
D
dzhwinter 已提交
318

D
dzhwinter 已提交
319 320 321 322
    // 3. if output reuse input inplaced, the dependency group is not changed.
    // For detail, check
    // the function description in "OutConnectInputByCtrlVar"
    if (view_.OutConnectInputByCtrlVar(in_node, out_node)) {
D
dzhwinter 已提交
323 324 325 326
      VLOG(4) << string::Sprintf(
          "Skiped pair %s => %s. %s input and output connect by ctrl var."
          "inplace such pair will generate a circle.",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
327 328
      continue;
    }
D
dzhwinter 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

    // 4. if output has been memory optimize by python(fluid.memory_optmize()).
    // this candidate  can not be inplaced. Will be deprecated in the future.
    if (view_.ReusedInPythonMemOpt(out_node->Name())) {
      VLOG(4) << string::Sprintf(
          "Skiped %s => %s reused previous memory block in python memory "
          "optmize,"
          "it inplace may generate a circle",
          out_var_name, in_var_name, op->Name());
      continue;
    }

    // Debug Interface. Which would be skipped by the pass.
    if (out_node->Name() == FLAGS_memory_optimize_debug) {
      VLOG(3) << "Skiped var by force. FLAGS_memory_optimize_debug="
              << out_node->Name();
      continue;
    }

D
dzhwinter 已提交
348 349 350 351
    // NOTE(dzhwinter):
    // two stage commit of inplaced process. if after inplace happens generate a
    // circle,
    // then withdraw the changes. Otherwise, safely add the node.
D
dzhwinter 已提交
352 353 354 355 356 357 358
    auto swap_nodes =
        TryInplaceModifyVar(out_var_name, in_var_name, idx, graph);

    if (!ir::HasCircle(*graph)) {
      VLOG(3) << string::Sprintf("!!! %s,  %s => %s inplaced", op->Name(),
                                 out_var_name, in_var_name);
      InplaceModifyDesc(out_var_name, in_var_name, idx);
D
dzhwinter 已提交
359
      CommitModify(swap_nodes, graph);
D
dzhwinter 已提交
360 361 362 363
    } else {
      VLOG(3) << string::Sprintf(
          "Skiped pair %s => %s, inplace will generate a circle. withdraw %s",
          out_var_name, in_var_name, op->Name());
D
dzhwinter 已提交
364
      WithdrawModify(swap_nodes, graph);
D
dzhwinter 已提交
365
    }
D
dzhwinter 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  }
}

ir::Node* GraphView::GetNodeByName(const std::string& name,
                                   const std::vector<ir::Node*>& nodes) const {
  // nodes should be op->inputs/outputs
  // node in same node do have different name.
  std::unordered_set<std::string> nodes_in_op;
  bool has_dup_node =
      std::all_of(nodes.begin(), nodes.end(), [&nodes_in_op](ir::Node* node) {
        if (!node->IsVar() || node->IsCtrlVar() || node->Var() == nullptr) {
          if (nodes_in_op.count(node->Name())) return true;
          nodes_in_op.emplace(node->Name());
        }
        return false;
      });
  PADDLE_ENFORCE(has_dup_node == false, "nodes has same name!");
  ir::Node* node = nullptr;
  for (auto* it : nodes) {
    if (!it->IsVar() || it->IsCtrlVar() || it->Var() == nullptr) continue;
    if (it->Name() == name) {
      node = it;
      break;
    }
  }
  PADDLE_ENFORCE(node != nullptr,
                 string::Sprintf("Not found var %s in nodes!", name));
  return node;
}

std::vector<ir::Node*> GraphView::PendingOpsOnVar(ir::Node* node) {
397 398 399 400 401 402 403 404 405 406
  // get the pending ops depends on same var node.
  // because node also maybe a inplaced variable, so need to backtrack all the
  // previous inplaced vars.
  std::vector<ir::Node*> pending_ops;
  ir::Node* p = node;
  while (p != nullptr) {
    pending_ops.insert(pending_ops.end(), p->outputs.begin(), p->outputs.end());
    p = GetPrevCascadeInplacedVar(p);
  }
  return pending_ops;
D
dzhwinter 已提交
407 408
}

D
dzhwinter 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
void GraphView::Build(ir::Graph* g) {
  // track the var nodes in correct order.
  // Because we insert some new created node. Which may have data race between
  // nodes.
  // resolve data harzards depends on the var nodes in right order.
  ops_ = SortOpLikeDescOrder(*g);

  // track the nodes which reused previous node in Python memory optimize.
  // these node can not be inplaced, otherwise may generate a circle in graph.
  std::unordered_set<std::string> all_vars;
  for (auto& node : g->Nodes()) {
    if (node->IsVar()) continue;
    for (auto& out : node->outputs) {
      if (out->IsCtrlVar() || out->Var() == nullptr) continue;
      if (all_vars.count(out->Name())) {
        dup_nodes_.emplace(out->Name());
      } else {
        all_vars.emplace(out->Name());
      }
    }
  }
}
D
dzhwinter 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

const std::vector<ir::Node*> GraphView::AllOps() { return ops_; }

bool GraphView::OutConnectInputByCtrlVar(ir::Node* in_var, ir::Node* out_var) {
  // assume v_a0, v_a1 is variable. v_a0 -> v_a0 means already inplaced.
  // v_a1 -> v_a1 means already inplaced.
  // Currently we make decision to check if the v_a0 -> v_a1 can be inplace.
  //
  // v_a0
  //  +
  //  |
  //  v
  // v_a0
  //  +
  //  |
  //  v
  // v_a1
  //  +
  //  |
  //  v
  // v_a1
  // start from the first inplaced input v_a0(on the top one).
  // Do a DFSSearch, get all its paths. If there is one path connect
  // the in_var and out_var which contains control dep var.
  // Means there a control path. out_var can not be inplaced use in_var.

  std::unordered_set<ir::Node *> out_var_set, in_var_set;
  ir::Node* out = out_var;
  // get the ops with same output name
  while (out != nullptr) {
    out_var_set.emplace(out);
462
    out = GetNextCascadeInplacedVar(out);
D
dzhwinter 已提交
463 464 465 466 467 468
  }

  // get ops with same input name
  ir::Node* in = in_var;
  while (in != nullptr) {
    in_var_set.emplace(in);
469
    in = GetPrevCascadeInplacedVar(in);
D
dzhwinter 已提交
470 471 472 473 474 475
  }
  // find if there is path with control dep var connect the in_var_set and
  // out_var_set
  return ConnectByCtrlVar(in_var_set, out_var_set);
}

D
dzhwinter 已提交
476 477 478 479
bool GraphView::ReusedInPythonMemOpt(const std::string& var) const {
  return dup_nodes_.count(var);
}

D
dzhwinter 已提交
480 481 482 483 484
}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inplace_pass, paddle::framework::details::InplacePass);