hl_cuda_sparse.cuh 31.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "hl_device_functions.cuh"

template <int VALUE_TYPE>
__device__ real findvalue(real* csr_val,
                          int* csr_col,
                          int col_start,
                          int col_end,
                          int index) {
  int start = col_start;
  int end = col_end-1;
  int mid = -1;

  while (start < end) {
    mid = start + ((end - start) / 2);
    if (csr_col[mid] < index)
      start = mid + 1;
    else
      end = mid;
  }

  if ((start < col_end) && (csr_col[start] == index)) {
    real ret = VALUE_TYPE == 0 ? 1.0 : csr_val[start];
    return ret;
  } else {
    return 0.0;
  }
}

#define     CU_CSR2DENSE_THREAD_X   16
#define     CU_CSR2DENSE_THREAD_Y   16
template <int VALUE_TYPE>
__global__ void KeSMatrixCsr2Dense(real * csr_val,
                                   int * csr_row,
                                   int * csr_col,
                                   real * C_d,
                                   const int dimM,
                                   const int dimN) {
  const int row = blockIdx.y*blockDim.y+threadIdx.y;
  const int col = blockIdx.x*blockDim.x+threadIdx.x;

  if (row >= dimM || col >= dimN) {
    return;
  }

  int start = csr_row[row];
  int end = csr_row[row+1];

  real sum = findvalue<VALUE_TYPE>(csr_val, csr_col, start, end, col);
  C_d[row*dimN + col] = sum;
}

template <int VALUE_TYPE>
__global__ void KeSMatrixCsc2Dense(real * csc_val,
                                   int * csc_row,
                                   int * csc_col,
                                   real * C_d,
                                   const int dimM,
                                   const int dimN) {
  const int row = blockIdx.y*blockDim.y+threadIdx.y;
  const int col = blockIdx.x*blockDim.x+threadIdx.x;

  if (row >= dimM || col >= dimN) {
    return;
  }

  int start = csc_col[col];
  int end = csc_col[col+1];

  real sum = findvalue<VALUE_TYPE>(csc_val, csc_row, start, end, row);
  C_d[row*dimN + col] = sum;
}

#define     CU_CSRMM_N                  4
#define     CU_CSRMM_THREAD_X           32
#define     CU_CSRMM_THREAD_Y           32
#define     CU_CSRMM_BLOCK_N            (32*CU_CSRMM_N)
#define     CU_CSRMM_SHARED_ELEMENT     (2*CU_CSRMM_THREAD_X)
template <int VALUE_TYPE>
__global__ void KeSMatrixCsrMulDense(real *C_d,
                                     real * csr_val,
                                     int * csr_col,
                                     int * csr_row,
                                     real *B_d,
                                     int dimM,
                                     int dimN,
                                     int dimK,
                                     real alpha,
                                     real beta) {
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  const int index_m = blockIdx.y*CU_CSRMM_THREAD_Y+threadIdx.y;
  int index_n = blockIdx.x*CU_CSRMM_BLOCK_N+threadIdx.x;

  __shared__ real csr_val_sh[CU_CSRMM_THREAD_Y][CU_CSRMM_SHARED_ELEMENT];
  __shared__ int csr_col_sh[CU_CSRMM_THREAD_Y][CU_CSRMM_SHARED_ELEMENT];

  if (index_m >= dimM) {
    return;
  }

  // possible optimization, cache this in shared memory
  int csr_start = csr_row[index_m];
  int csr_end = csr_row[index_m+1];
  int csr_index =  csr_start + idx;

  int csr_iter = (csr_end-csr_start)/CU_CSRMM_SHARED_ELEMENT;
  int csr_rem = (csr_end-csr_start)%CU_CSRMM_SHARED_ELEMENT;

  int index_k = -1;
  real sum[CU_CSRMM_N] = {0};
  real b_r[CU_CSRMM_N] = {0};

  for (int csr_i = 0; csr_i < csr_iter; csr_i++) {
    #pragma unroll
    for (int i = 0; i < (CU_CSRMM_SHARED_ELEMENT/CU_CSRMM_THREAD_X); i++) {
      if (VALUE_TYPE != 0) {
        csr_val_sh[idy][idx + i*CU_CSRMM_THREAD_X] = csr_val[csr_index];
      }
      csr_col_sh[idy][idx + i*CU_CSRMM_THREAD_X] = csr_col[csr_index];
      csr_index += CU_CSRMM_THREAD_X;
    }

    for (int index = 0; index < CU_CSRMM_SHARED_ELEMENT; index++) {
      index_k = csr_col_sh[idy][index];
      real a_r = VALUE_TYPE == 0 ? 1.0 : csr_val_sh[idy][index];
      int tmp_index = index_n;
      real *B_d_r = B_d + tmp_index;
      #pragma unroll
      for (int n = 0; n < CU_CSRMM_N; n++) {
        if (tmp_index >= dimN) break;
        b_r[n] = B_d_r[index_k*dimN];
        B_d_r += CU_CSRMM_THREAD_X;
        tmp_index += CU_CSRMM_THREAD_X;
      }

      #pragma unroll
      for (int n = 0; n < CU_CSRMM_N; n++) {
        sum[n] = VALUE_TYPE == 0 ? sum[n] + b_r[n] : sum[n] + a_r*b_r[n];
      }
    }
    // __syncthreads();
  }

  if (csr_rem != 0) {
    #pragma unroll
    for (int i = 0; i < (CU_CSRMM_SHARED_ELEMENT/CU_CSRMM_THREAD_X); i++) {
      if (csr_index < csr_end) {
        if (VALUE_TYPE != 0) {
            csr_val_sh[idy][idx + i*CU_CSRMM_THREAD_X] = csr_val[csr_index];
        }
        csr_col_sh[idy][idx + i*CU_CSRMM_THREAD_X] = csr_col[csr_index];
      }
      csr_index += CU_CSRMM_THREAD_X;
    }
    // __syncthreads();

    #pragma unroll
    for (int index = 0; index < csr_rem; index++) {
      index_k = csr_col_sh[idy][index];
      real a_r = VALUE_TYPE == 0 ? 1.0 : csr_val_sh[idy][index];
      int tmp_index = index_n;
      real *B_d_r = B_d + tmp_index;
      #pragma unroll
      for (int n = 0; n < CU_CSRMM_N; n++) {
        if (tmp_index >= dimN) break;
        b_r[n] = B_d_r[index_k*dimN];
        B_d_r += CU_CSRMM_THREAD_X;
        tmp_index += CU_CSRMM_THREAD_X;
      }

      #pragma unroll
      for (int n = 0; n < CU_CSRMM_N; n++) {
        sum[n] = VALUE_TYPE == 0 ? sum[n] + b_r[n] : sum[n] + a_r*b_r[n];
      }
    }
  }

  C_d += __mul24(index_m, dimN);
  #pragma unroll
  for (int n = 0; n < CU_CSRMM_N; n++) {
    if (index_n < dimN) {
      C_d[index_n] = alpha*sum[n] + beta*C_d[index_n];
      index_n += CU_CSRMM_THREAD_X;
    }
  }
}

#define CU_CSC_MUL_DENSE_THREAD_N           1
#define CU_CSC_MUL_DENSE_THREAD_X           32
#define CU_CSC_MUL_DENSE_THREAD_Y           4
#define CU_CSC_MUL_DENSE_BLOCK_K            (CU_CSC_MUL_DENSE_THREAD_Y)
#define CU_CSC_MUL_DENSE_BLOCK_N            \
        (CU_CSC_MUL_DENSE_THREAD_N * CU_CSC_MUL_DENSE_THREAD_X)
#define CU_CSC_MUL_DENSE_SHARED_ELEMENT     (CU_CSC_MUL_DENSE_THREAD_X)
template <int VALUE_TYPE>
__global__ void KeSMatrixCscMulDense(real *C_d,
                                     real * csc_val,
                                     int * csc_row,
                                     int * csc_col,
                                     real *B_d,
                                     int dimM,
                                     int dimN,
                                     int dimK,
                                     real alpha,
                                     real beta) {
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  const int index_k = blockIdx.y*CU_CSC_MUL_DENSE_BLOCK_K+threadIdx.y;
  const int index_n = blockIdx.x*CU_CSC_MUL_DENSE_BLOCK_N+threadIdx.x;

  if (index_k >= dimK) {
    return;
  }

  __shared__
  real csc_val_sh[CU_CSC_MUL_DENSE_THREAD_Y][CU_CSC_MUL_DENSE_SHARED_ELEMENT];
  __shared__
  int csc_row_sh[CU_CSC_MUL_DENSE_THREAD_Y][CU_CSC_MUL_DENSE_SHARED_ELEMENT];

  // possible optimization, cache this in shared memory
  int csc_start = csc_col[index_k];
  int csc_end = csc_col[index_k+1];
  int csc_index = csc_start + idx;
  int csc_iter = (csc_end-csc_start)/CU_CSC_MUL_DENSE_SHARED_ELEMENT;
  int csc_rem = (csc_end-csc_start)%CU_CSC_MUL_DENSE_SHARED_ELEMENT;
  int index_m = -1;

  real b_r[CU_CSC_MUL_DENSE_THREAD_N] = {0};
  real *B_d_r;
  real *C_d_r;
  int index_n_t;
  B_d += index_n + __mul24(index_k, dimN);
  C_d += index_n;
  for (int csr_i = 0; csr_i < csc_iter; csr_i++) {
    #pragma unroll
    for (int i = 0;
         i < (CU_CSC_MUL_DENSE_SHARED_ELEMENT/CU_CSC_MUL_DENSE_THREAD_X); i++) {
      if (VALUE_TYPE != 0) {
        csc_val_sh[idy][idx + i*CU_CSC_MUL_DENSE_THREAD_X] = csc_val[csc_index];
      }
      csc_row_sh[idy][idx + i*CU_CSC_MUL_DENSE_THREAD_X] = csc_row[csc_index];
      csc_index += CU_CSC_MUL_DENSE_THREAD_X;
    }

    #pragma unroll
    for (int index = 0; index < CU_CSC_MUL_DENSE_SHARED_ELEMENT; index++) {
      index_m = csc_row_sh[idy][index];
      real a_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
      B_d_r = B_d;
      C_d_r = C_d + __mul24(index_m, dimN);

      index_n_t = index_n;
      #pragma unroll
      for (int n = 0; n < CU_CSC_MUL_DENSE_THREAD_N; n++) {
        if (index_n_t < dimN) {
          b_r[n] = B_d_r[0];
          B_d_r += CU_CSC_MUL_DENSE_THREAD_X;
          index_n_t += CU_CSC_MUL_DENSE_THREAD_X;
        }
      }

      index_n_t = index_n;
      #pragma unroll
      for (int n = 0; n < CU_CSC_MUL_DENSE_THREAD_N; n++) {
        if (index_n_t < dimN) {
          real tmp;
          tmp = alpha*a_r*b_r[n];
          atomicAdd(C_d_r, tmp);
          C_d_r += CU_CSC_MUL_DENSE_THREAD_X;
          index_n_t += CU_CSC_MUL_DENSE_THREAD_X;
        }
      }
    }
    // __syncthreads();
  }

  if (csc_rem != 0) {
    #pragma unroll
    for (int i = 0;
         i < (CU_CSC_MUL_DENSE_SHARED_ELEMENT/CU_CSC_MUL_DENSE_THREAD_X); i++) {
      if (csc_index < csc_end) {
        if (VALUE_TYPE != 0) {
          csc_val_sh[idy][idx + i * CU_CSC_MUL_DENSE_THREAD_X] =
            csc_val[csc_index];
        }
        csc_row_sh[idy][idx + i * CU_CSC_MUL_DENSE_THREAD_X] =
          csc_row[csc_index];
      }
      csc_index += CU_CSC_MUL_DENSE_THREAD_X;
    }
    // __syncthreads();

    #pragma unroll
    for (int index = 0; index < csc_rem; index++) {
      index_m = csc_row_sh[idy][index];
      real a_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
      B_d_r = B_d;
      C_d_r = C_d + __mul24(index_m, dimN);

      index_n_t = index_n;
      #pragma unroll
      for (int n = 0; n < CU_CSC_MUL_DENSE_THREAD_N; n++) {
        if (index_n_t < dimN) {
          b_r[n] = B_d_r[0];
          B_d_r += CU_CSC_MUL_DENSE_THREAD_X;
          index_n_t += CU_CSC_MUL_DENSE_THREAD_X;
        }
      }

      index_n_t = index_n;
      #pragma unroll
      for (int n = 0; n < CU_CSC_MUL_DENSE_THREAD_N; n++) {
        if (index_n_t < dimN) {
          real tmp;
          tmp = alpha*a_r*b_r[n];
          atomicAdd(C_d_r, tmp);
          C_d_r += CU_CSC_MUL_DENSE_THREAD_X;
          index_n_t += CU_CSC_MUL_DENSE_THREAD_X;
        }
      }
    }
  }
}

/* best perf */
#ifndef HPPL_TYPE_DOUBLE
#define CU_CSCMM_THREAD_M_BEST          9
#else
#define CU_CSCMM_THREAD_M_BEST          4
#endif
#define CU_CSCMM_THREAD_X_BEST          32
#define CU_CSCMM_THREAD_Y_BEST          32
#define CU_CSCMM_BLOCK_M_BEST  (CU_CSCMM_THREAD_M_BEST * CU_CSCMM_THREAD_X_BEST)
#define CU_CSCMM_BLOCK_N_BEST  (CU_CSCMM_THREAD_Y_BEST)
template <int VALUE_TYPE>
__global__ void KeSMatrixDenseMulCsc(real *C_d,
                                     const real *A_d,
                                     const real *csc_val,
                                     const int *csc_row,
                                     const int *csc_col,
                                     int dimM,
                                     int dimN,
                                     int dimK,
                                     real alpha,
                                     real beta) {
  __shared__ real csc_val_sh[CU_CSCMM_BLOCK_N_BEST][CU_CSCMM_THREAD_X_BEST];
  __shared__ int csc_row_sh[CU_CSCMM_BLOCK_N_BEST][CU_CSCMM_THREAD_X_BEST];
  __shared__ real A_s[CU_CSCMM_BLOCK_M_BEST][CU_CSCMM_THREAD_Y_BEST+1];

  int iter_k = dimK/CU_CSCMM_THREAD_Y_BEST;
  int rem_k = dimK%CU_CSCMM_THREAD_Y_BEST;
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  const int index_n = blockIdx.y*CU_CSCMM_BLOCK_N_BEST+threadIdx.y;

  int csc_start;
  int csc_end;
  if (index_n < dimN) {
    csc_start = csc_col[index_n];
    csc_end = csc_col[index_n+1];
  } else {
    csc_start = 0;
    csc_end = 0;
  }
  int csc_index =  csc_start + idx;
  int csc_iter = (csc_end-csc_start)/CU_CSCMM_THREAD_X_BEST;
  int csc_rem = (csc_end-csc_start)%CU_CSCMM_THREAD_X_BEST;
  int index_k = -1;

  if (csc_index < csc_end) {
    if (VALUE_TYPE != 0) {
      csc_val_sh[idy][idx] = csc_val[csc_index];
    }
    csc_row_sh[idy][idx] = csc_row[csc_index];
    csc_index += CU_CSCMM_THREAD_X_BEST;
  }

  const int ibx = blockIdx.x * CU_CSCMM_BLOCK_M_BEST;
  int dim = ibx+idy;
  A_d += idx + __mul24(dim, dimK);
  #pragma unroll
  for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
    A_s[idy + m * 32][idx] = 0.0f;
    if (dim + m * 32 < dimM && idx < dimK) {
      A_s[idy + m * 32][idx] = A_d[m * 32 * dimK];
    }
  }
  __syncthreads();

  real b_r;
  real a_r[CU_CSCMM_THREAD_M_BEST] = {0};
  real sum[CU_CSCMM_THREAD_M_BEST] = {0};
  real A_r_s[CU_CSCMM_THREAD_M_BEST] = {0};
  int index = 0;
  int block_end_k = 0;;
  int index_iter_csc = csc_iter;

  for (int i_k = 0; i_k < iter_k; i_k++) {
    A_d += CU_CSCMM_THREAD_Y_BEST;
    block_end_k += CU_CSCMM_THREAD_Y_BEST;
    #pragma unroll
    for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
      if (dim + m*32 < dimM && (idx + (i_k+1)*CU_CSCMM_THREAD_Y_BEST < dimK)) {
        A_r_s[m] = A_d[m*32*dimK];
      } else {
        A_r_s[m] = 0.0f;
      }
    }

    if (index_iter_csc > 0) {
      goto WARP_SYNC;
    } else {
      goto WARP_SYNC_2;
    }

    while (index_iter_csc) {
      if (VALUE_TYPE != 0) {
        csc_val_sh[idy][idx] = csc_val[csc_index];
      }
      csc_row_sh[idy][idx] = csc_row[csc_index];
      csc_index += CU_CSCMM_THREAD_X_BEST;
      index = 0;

WARP_SYNC:
      for (; index < CU_CSCMM_THREAD_X_BEST; index++) {
        index_k = csc_row_sh[idy][index];
        if (index_k >= block_end_k) {
          goto BLOCK_SYNC;
        }
        b_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
        #pragma unroll
        for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
          a_r[m] = A_s[idx+m*32][index_k-i_k*CU_CSCMM_THREAD_Y_BEST];
          sum[m] = VALUE_TYPE == 0 ? sum[m] + a_r[m] : sum[m] + a_r[m]*b_r;
        }
      }
      index_iter_csc--;
    }

    if (csc_rem != 0) {
      if (csc_iter != 0) {
        if (csc_index < csc_end) {
          if (VALUE_TYPE != 0) {
            csc_val_sh[idy][idx] = csc_val[csc_index];
          }
          csc_row_sh[idy][idx] = csc_row[csc_index];
          csc_index += CU_CSCMM_THREAD_X_BEST;
        }
        index = 0;
      }
      __threadfence_block();

WARP_SYNC_2:
      for (; index < csc_rem; index++) {
        index_k = csc_row_sh[idy][index];
        if (index_k >= block_end_k) {
          goto BLOCK_SYNC;
        }
        b_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
        #pragma unroll
        for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
          a_r[m] = A_s[idx+m*32][index_k-i_k*CU_CSCMM_THREAD_Y_BEST];
          sum[m] = VALUE_TYPE == 0 ? sum[m] + a_r[m] : sum[m] + a_r[m]*b_r;
        }
      }
    }

BLOCK_SYNC:
    __syncthreads();
    #pragma unroll
    for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
      A_s[idy+m*32][idx] = A_r_s[m];
    }
    __syncthreads();
  }

  if (rem_k != 0) {
    if (index_iter_csc == 0) {
      goto TEMP_TEST;
    }

    for (; index < CU_CSCMM_THREAD_X_BEST; index++) {
      index_k = csc_row_sh[idy][index];
      if (index_k >= dimK) {
        break;
      }

      b_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
      #pragma unroll
      for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
        a_r[m] = A_s[idx+m*32][index_k-iter_k*CU_CSCMM_THREAD_Y_BEST];
        sum[m] = VALUE_TYPE == 0 ? sum[m] + a_r[m] : sum[m] + a_r[m]*b_r;
      }
    }

    if (csc_rem != 0) {
      if (csc_index < csc_end) {
        if (VALUE_TYPE != 0) {
          csc_val_sh[idy][idx] = csc_val[csc_index];
        }
        csc_row_sh[idy][idx] = csc_row[csc_index];
        csc_index += CU_CSCMM_THREAD_X_BEST;
      }
      index = 0;

TEMP_TEST:
      for (; index < csc_rem; index++) {
        index_k = csc_row_sh[idy][index];
        if (index_k >= dimK) {
            break;
        }
        b_r = VALUE_TYPE == 0 ? 1.0 : csc_val_sh[idy][index];
        #pragma unroll
        for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
          a_r[m] = A_s[idx+m*32][index_k-iter_k*CU_CSCMM_THREAD_Y_BEST];
          sum[m] = VALUE_TYPE == 0 ? sum[m] + a_r[m] : sum[m] + a_r[m]*b_r;
        }
      }
    }
  }

  __syncthreads();
  #pragma unroll
  for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
    A_s[idx+m*32][idy] = alpha*sum[m];
  }
  __syncthreads();

  int index_m_c = ibx + idy;
  int index_n_c = blockIdx.y*CU_CSCMM_BLOCK_N_BEST + idx;
  C_d += index_n_c + __mul24(index_m_c, dimN);
  #pragma unroll
  for (int m = 0; m < CU_CSCMM_THREAD_M_BEST; m++) {
    if (index_m_c < dimM && index_n_c < dimN) {
      C_d[0] = A_s[idy+m*32][idx] + beta*C_d[0];
    }
    index_m_c += 32;
    C_d += dimN*32;
  }
}

#define     CU_DM_CSR_THREAD_X           32
#define     CU_DM_CSR_THREAD_Y           4
#define     CU_DM_CSR_N                  4
#define     CU_DM_CSR_BLOCK_M            (CU_DM_CSR_N*CU_DM_CSR_THREAD_Y)
#define     CU_DM_CSR_BLOCK_K            (CU_DM_CSR_THREAD_X)
#define     CU_DM_CSR_SHARED_ELEMENT     (1*CU_DM_CSR_THREAD_Y)
template <int VALUE_TYPE>
__global__ void KeSMatrixDenseMulCsr(real *C_d,
                                     real *A_d,
                                     real *csr_val,
                                     const int *csr_row,
                                     const int *csr_col,
                                     int dimM,
                                     int dimN,
                                     int dimK,
                                     real alpha,
                                     real beta) {
  const int idx = threadIdx.x;
  const int idy = threadIdx.y;
  int index_k = __mul24(blockIdx.x, CU_DM_CSR_THREAD_X) + threadIdx.x;
  int index_m = __mul24(blockIdx.y, CU_DM_CSR_BLOCK_M) +
    __mul24(threadIdx.y, CU_DM_CSR_N);

  if (index_k >= dimK) {
    return;
  }

  __shared__ real csr_val_sh[CU_DM_CSR_THREAD_X][CU_DM_CSR_SHARED_ELEMENT];
  __shared__ int csr_col_sh[CU_DM_CSR_THREAD_X][CU_DM_CSR_SHARED_ELEMENT];

  // possible optimization, cache this in shared memory
  int csr_start = csr_row[index_k];
  int csr_end = csr_row[index_k+1];
  int csr_index =  csr_start + idy;
  int csr_iter = (csr_end-csr_start)/CU_DM_CSR_SHARED_ELEMENT;
  int csr_rem = (csr_end-csr_start)%CU_DM_CSR_SHARED_ELEMENT;

  real tmp = 0.0;
  int index_n = -1;
  int index_m_t = index_m;
  real a_r[CU_DM_CSR_N] = {0};
  real *A_d_tmp = A_d + __mul24(index_m, dimK) + index_k;
  real *A_d_r = A_d_tmp;

  #pragma unroll
  for (int n=0; n < CU_DM_CSR_N; n++) {
    if ( index_m_t++ < dimM ) {
      a_r[n] = A_d_r[0];
      A_d_r += dimK;
    }
  }

  for (int csr_i = 0; csr_i < csr_iter; csr_i++) {
    #pragma unroll
    for (int i = 0; i < (CU_DM_CSR_SHARED_ELEMENT/CU_DM_CSR_THREAD_Y); i++) {
      if (VALUE_TYPE != 0) {
        csr_val_sh[idx][idy + i*CU_DM_CSR_THREAD_Y] = csr_val
        [csr_index];
      }
      csr_col_sh[idx][idy + i*CU_DM_CSR_THREAD_Y] = csr_col[csr_index];
      csr_index += CU_DM_CSR_THREAD_Y;
    }
    __syncthreads();

    #pragma unroll
    for (int index = 0; index < CU_DM_CSR_SHARED_ELEMENT; index++) {
      index_n = csr_col_sh[idx][index];
      real b_r = VALUE_TYPE == 0 ? 1.0 : csr_val_sh[idx][index];
      real *C_d_r = C_d + __mul24(index_m, dimN) + index_n;

      index_m_t = index_m;
      #pragma unroll
      for (int n=0; n < CU_DM_CSR_N; n++) {
        if (index_m_t++ < dimM) {
          tmp = alpha * b_r * a_r[n];
          atomicAdd(C_d_r, tmp);
          C_d_r += dimN;
        }
      }
    }
    __syncthreads();
  }

  if (csr_rem != 0) {
    #pragma unroll
    for (int i = 0; i < (CU_DM_CSR_SHARED_ELEMENT/CU_DM_CSR_THREAD_Y); i++) {
      if (csr_index < csr_end) {
        if (VALUE_TYPE !=0) {
          csr_val_sh[idx][idy + i*CU_DM_CSR_THREAD_Y] = csr_val[csr_index];
        }
        csr_col_sh[idx][idy + i*CU_DM_CSR_THREAD_Y] = csr_col[csr_index];
      }
      csr_index += CU_DM_CSR_THREAD_Y;
    }
    __syncthreads();

    #pragma unroll
    for (int index = 0; index < csr_rem; index++) {
      index_n = csr_col_sh[idx][index];
      real b_r = VALUE_TYPE == 0 ? 1.0 : csr_val_sh[idx][index];
      real *C_d_r = C_d + __mul24(index_m, dimN) + index_n;
      index_m_t = index_m;
      #pragma unroll
      for (int n=0; n < CU_DM_CSR_N; n++) {
        if (index_m_t++ < dimM) {
          tmp = alpha * b_r * a_r[n];
          atomicAdd(C_d_r, tmp);
          C_d_r += dimN;
        }
      }
    }
  }
}

#define     CU_CSCMM_DMD2CSC_THREAD_X   128
#define     CU_CSCMM_DMD2CSC_SHARE_X    128
__global__ void KeSMatrixDenseMulDense2CSC(real *csc_val,
                                           const int *csc_row,
                                           const int *csc_col,
                                           real *A_d,
                                           real *B_d,
                                           bool trans_A,
                                           bool trans_B,
                                           int dimM,
                                           int dimN,
                                           int dimK,
                                           real alpha,
                                           real beta) {
  __shared__ real B_s[CU_CSCMM_DMD2CSC_SHARE_X];
  const int idx = threadIdx.x;  // one block compute one column
  const int ibx = blockIdx.x;  // col index
  int csc_start;
  int csc_end;
  if (ibx < dimN) {
    csc_start = csc_col[ibx];
    csc_end = csc_col[ibx + 1];
  } else {
    csc_start = 0;
    csc_end = 0;
  }

  int iter_num = dimK / CU_CSCMM_DMD2CSC_SHARE_X;
  int iter_rem = dimK % CU_CSCMM_DMD2CSC_SHARE_X;
  real * B_tmp = B_d + ibx;  // column index

  for (int j = 0; j < iter_num; j++) {
    int rowStart = (j * CU_CSCMM_DMD2CSC_SHARE_X + idx) * dimN;
    int index = rowStart;
    for (int m = idx;
         m < CU_CSCMM_DMD2CSC_SHARE_X; m += CU_CSCMM_DMD2CSC_THREAD_X) {
     B_s[m] = B_tmp[index];
     index = index + CU_CSCMM_DMD2CSC_THREAD_X * dimN;
    }
    __syncthreads();

    for (int i = csc_col[ibx] + idx;
         i < csc_col[ibx + 1]; i += CU_CSCMM_DMD2CSC_THREAD_X) {
      int row = csc_row[i];  // row Index
      /* compute C[row, ibx] */
      float results = 0;
      if (!trans_A) {
        int index = row * dimK + j * CU_CSCMM_DMD2CSC_SHARE_X;
        for (int k = 0; k < CU_CSCMM_DMD2CSC_SHARE_X; k++) {
          results += A_d[index + k] * B_s[k];
        }
      } else {
        int  index = j * CU_CSCMM_DMD2CSC_SHARE_X;
        for (int k = 0; k < CU_CSCMM_DMD2CSC_SHARE_X; k++) {
          results += A_d[(index + k) * dimM + row] * B_s[k];
        }
      }
      csc_val[i]  += results * alpha;
    }
  }

  if (iter_rem) {
    int rowStart = (iter_num * CU_CSCMM_DMD2CSC_SHARE_X + idx) * dimN;
    int index = rowStart;
    // #pragma unroll
    for (int m = idx; m < iter_rem;  m += CU_CSCMM_DMD2CSC_THREAD_X) {
      B_s[m] = B_tmp[index];
      index = index + CU_CSCMM_DMD2CSC_THREAD_X * dimN;
    }
    __syncthreads();
    for (int i = csc_start + idx;
         i < csc_end; i += CU_CSCMM_DMD2CSC_THREAD_X) {
      int row = csc_row[i];  // row Index
      /* compute C[row, ibx] */
      float results = 0;
      if (!trans_A) {
        int index = row * dimK + iter_num * CU_CSCMM_DMD2CSC_SHARE_X;
        for (int k = 0; k < iter_rem; k++) {
          results += A_d[index + k] * B_s[k];
        }
      } else {
        int  index =  iter_num * CU_CSCMM_DMD2CSC_SHARE_X;
        for (int k = 0; k < iter_rem; k++) {
          results += A_d[(index + k) * dimM + row] * B_s[k];
        }
      }
      csc_val[i] += alpha * results;
    }
  }
}

#define     CU_CSCMM_DMD2CSR_THREAD_X   128
#define     CU_CSCMM_DMD2CSR_SHARE_X    128
__global__ void KeSMatrixDenseMulDense2CSR(real *csr_val,
                                     const int *csr_row,
                                     const int *csr_col,
                                     real *A_d,
                                     real *B_d,
                                     bool  trans_A,
                                     bool  trans_B,
                                     int dimM,
                                     int dimN,
                                     int dimK,
                                     real alpha,
                                     real beta) {
  __shared__ real A_s[CU_CSCMM_DMD2CSR_SHARE_X];
  const int idx = threadIdx.x;  // one block comput one row
  const int ibx = blockIdx.x;  // row index

  int csr_start;
  int csr_end;
  if (ibx < dimM) {
    csr_start = csr_row[ibx];
    csr_end = csr_row[ibx+1];
  } else {
    csr_start = 0;
    csr_end = 0;
  }

  int iter_num = dimK / CU_CSCMM_DMD2CSR_SHARE_X;
  int csr_rem = dimK % CU_CSCMM_DMD2CSR_SHARE_X;
  for (int j = 0; j < iter_num; j++) {
    if (!trans_A) {
      int colStart = j * CU_CSCMM_DMD2CSR_SHARE_X + ibx * dimK;
      int index = colStart + idx;
      #pragma unroll
      for (int m = idx;
           m < CU_CSCMM_DMD2CSR_SHARE_X; m += CU_CSCMM_DMD2CSR_THREAD_X) {
        A_s[m] = A_d[index];
        index = index + CU_CSCMM_DMD2CSR_THREAD_X;
      }
    } else {
      int colStart = (j * CU_CSCMM_DMD2CSR_SHARE_X) * dimM  + ibx;
      int index = colStart + idx * dimM;
      for (int m = idx;
           m < CU_CSCMM_DMD2CSR_SHARE_X; m += CU_CSCMM_DMD2CSR_THREAD_X) {
        A_s[m] = A_d[index];
        index = index + CU_CSCMM_DMD2CSR_THREAD_X * dimM;
      }
    }
    __syncthreads();
    for (int i = csr_start + idx; i < csr_end; i += CU_CSCMM_DMD2CSR_THREAD_X) {
      int col_idx =  csr_col[i];  // col index
      /* comput C[ibx, col_idx] */
      real results = 0;
      int index = (j * CU_CSCMM_DMD2CSR_SHARE_X) * dimN + col_idx;
      for (int k = 0; k < CU_CSCMM_DMD2CSR_SHARE_X; k++) {
        results += A_s[k] * B_d[k * dimN + index];
      }
      csr_val[i] += alpha * results;
    }
  }

  if (csr_rem) {
    if (!trans_A) {
      int colStart = (ibx + 1) * dimK- csr_rem;
      int index = colStart + idx;
      #pragma unroll
      for (int m = idx; m < csr_rem; m += CU_CSCMM_DMD2CSR_THREAD_X) {
        A_s[m] = A_d[index];
        index = index + CU_CSCMM_DMD2CSR_THREAD_X;
      }
     } else {
        int colStart = (iter_num * CU_CSCMM_DMD2CSR_SHARE_X) * dimM  + ibx;
        int index = colStart + idx * dimM;
        for (int m = idx; m < csr_rem;  m += CU_CSCMM_DMD2CSR_THREAD_X) {
          A_s[m] = A_d[index];
          index = index + CU_CSCMM_DMD2CSR_THREAD_X * dimM;
        }
     }
     __syncthreads();
     for (int i = csr_start + idx;
          i < csr_end; i += CU_CSCMM_DMD2CSR_THREAD_X) {
       int col_idx =  csr_col[i];
       float results = 0;
       int  index = (iter_num *CU_CSCMM_DMD2CSR_SHARE_X) * dimN + col_idx;
       for (int k = 0; k < csr_rem; k++) {
         results += A_s[k ] * B_d[k * dimN + index];
       }
       csr_val[i] += alpha * results;
     }
  }
}


/**
 *  @brief  Use to calculate row/col index for CSR/CSC sparse matrix
 *          according to csr_row(csc_col) and
 *          the value position in csr_val/csc_val
 *
 *  @param  indice      csr_row for hl_csr_matrix
 *                      csc_col for hl_csc_matrix
 *  @param  num         length of csr_row/csc_col
 *  @param  index       the value position in csr_val/csc_val
 *                      but need to add 1
 *                      that is, 1,2,3,...,nnz
 *  @note   the following kernels doesn't use findIndex,
 *          but may be used in the future.
 */
__device__ __forceinline__
int findIndex(int* indice, int num, int index) {
  int start = 0;
  int end = num - 1;
  int mid = -1;
  while (start < end) {
    mid = start + ((end - start) / 2);
    if (indice[mid] < index)
      start = mid + 1;
    else
      end = mid;
  }
  return (end - 1);
}

/**
 * @brief  sum reduction
 *
 * @param[in,out]  smem       input data, better to use __shared__ memory.
 * @param[in]      tid        local thread index.
 * @param[in]      blockDimX  the size of blockDim.x.
 *
 * note: return smem[0]: the sum of each elements of smem.
 */
__device__ __forceinline__
void reduce(real* smem, int tid, int blockDimX) {
  for (unsigned int s = blockDimX / 2; s > 0; s >>= 1) {
    if (tid < s) {
      smem[tid] += smem[tid + s];
    }
    __syncthreads();
  }
}

/**
 * @brief sum columns of csr sparse matrix (csr_val), then add to a_val.
 *        This kernel used atomicAdd and adapted to w >> h, w is the
 *        width of csr, and h is the height of csr.
 */
__global__ void KeSMatrixCsrColumnSum(real* a_val, real* csr_val,
                                      int* csr_col, const int dimNNZ) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  for (int idx = gid; idx < dimNNZ; idx += gridDim.x * blockDim.x) {
    int colIdx = csr_col[idx];
    real val = csr_val[idx];
    atomicAdd(a_val + colIdx, val);
  }
}

__global__ void KeSMatrixCsrAddBias(real* csr_val, int* csr_col, real* b_d,
                                    real scale, const int nnz) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;  // global index
  for (int idx = gid; idx < nnz; idx += gridDim.x * blockDim.x) {
    int colIdx = csr_col[idx];
    // not coalesced access to b_d
    csr_val[idx] += scale * b_d[colIdx];
  }
}

/**
 * @brief  csr sparse matrix add dense matrix.
 *         This kernel occurs load imbalances
 *         if number of each row is different greatly.
 */
__global__ void KeSMatrixCsrAddDense(real* csr_val, int* csr_row,
                                     int* csr_col, real* b_d, real alpha,
                                     real beta, int dimM, int dimN) {
  int gidx = blockIdx.x * blockDim.x + threadIdx.x;
  int gidy = blockIdx.y;
  if (gidy < dimM) {
    int start = csr_row[gidy];
    int end = csr_row[gidy + 1];
    for (int x = gidx; x < (end - start); x += gridDim.x * blockDim.x) {
      int col = csr_col[start + x];
      real val = csr_val[start + x];
      csr_val[start + x] = beta * val + alpha * b_d[gidy * dimN + col];
    }
  }
}

#define CU_BLOCK_K 16
#define CU_BLOCK_SIZE 128

__global__ void KeSMatrixDenseMulDenseTrans2CSR(
    real* csr_val, const int* csr_row, const int* csr_col, real* A_d,
    real* B_d, bool trans_A, bool trans_B, int dimM, int dimN, int dimK,
    real alpha, real beta) {

  __shared__ real B_s[CU_BLOCK_SIZE][CU_BLOCK_K];
  __shared__ real A_s[CU_BLOCK_K];

  const int idx = threadIdx.x;

  const int gidx_begin = blockIdx.x * CU_BLOCK_SIZE;
  const int gidy = blockIdx.y;
  const int gx_dim = gridDim.x * blockDim.x;

  int start = csr_row[gidy];
  int end = csr_row[gidy + 1];
  int size = end - start;

  int c_iter_num = (size + gx_dim - 1) / gx_dim;
  int iter_num = (dimK + CU_BLOCK_K - 1) / CU_BLOCK_K;
  for (int i = 0; i < c_iter_num; ++i) {
    if ((gidx_begin + i * gx_dim) >= size) {
      return;  // No need to calculate in this block.
    }

    real res = 0.0;
    int c_idx = gidx_begin + i * gx_dim + idx;

    for (int j = 0; j < iter_num; ++j) {
      int col = j * CU_BLOCK_K + idx;
      if (idx < CU_BLOCK_K) {
        A_s[idx] = col < dimK ? A_d[gidy * dimK + col] : 0.0;
      }
      for (int m = 0; m < CU_BLOCK_K; ++m) {
        int row = (idx / CU_BLOCK_K) + m * (CU_BLOCK_SIZE / CU_BLOCK_K);
        col = idx % CU_BLOCK_K;
        int csr_idx = gidx_begin + i * gx_dim + row;
        int ldRow = csr_idx < size ? csr_col[start + csr_idx] : 0;
        int ldCol = j * CU_BLOCK_K + col;
        B_s[row][col] = (csr_idx < size && ldCol < dimK) ?
                        B_d[ldRow * dimK + ldCol] : 0.0;
      }
      __syncthreads();

      for (int k = 0; k < CU_BLOCK_K; k++) {
        res += A_s[k] * B_s[idx][k];
      }
      __syncthreads();
    }

    if (c_idx < size) {
      csr_val[start + c_idx] += alpha * res;
    }
  }
}