test_orig2prim.py 19.4 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
from paddle.incubate.autograd.primrules import _orig2prim, _prim2orig, _jvp, _transpose
21
import paddle.fluid.core as core
22 23 24 25 26 27

paddle.enable_static()


############################ Test orig2prim rules ############################
class TestElementWiseAddOrig2Prim(unittest.TestCase):
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestOrig2Prim')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'elementwise_add'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_add', 'add_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
58 59 60 61
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
62 63 64 65 66 67 68 69 70 71 72

            prim_out = _orig2prim(op, *self.orig2prim_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]

            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            prim_out = flatten(prim_out)
            for k, v in self.out_map.items():
                self.assertEqual(prim_out[k].shape, v.shape)


class TestSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
73

74 75 76 77
    def init_data(self):
        self.op_type = 'sqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

78 79 80
        self.input = {
            'X': X,
        }
81 82 83 84 85 86 87 88 89 90 91 92 93
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sqrt', 'sqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestElementWiseMulOrig2Prim(TestElementWiseAddOrig2Prim):
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def init_data(self):
        self.op_type = 'elementwise_mul'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_mul', 'mul_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestMatmulV2Orig2Prim(TestElementWiseAddOrig2Prim):
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def init_data(self):
        self.op_type = 'matmul_v2'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')
        Y = paddle.static.data(name='Y', shape=[4, 3], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'trans_x': True, 'trans_y': True}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['matmul_v2', 'transpose_p', 'transpose_p', 'matmul_p']
        self.out_map = {0: self.output['Out']}


class TestTanhOrig2Prim(TestElementWiseAddOrig2Prim):
133

134 135 136 137
    def init_data(self):
        self.op_type = 'tanh'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

138 139 140
        self.input = {
            'X': X,
        }
141 142 143 144 145 146 147 148 149 150 151
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['tanh', 'tanh_p']
        self.out_map = {0: self.output['Out']}


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestSinOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'sin'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sin', 'sin_p']
        self.out_map = {0: self.output['Out']}


class TestCosOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'cos'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['cos', 'cos_p']
        self.out_map = {0: self.output['Out']}


class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'exp'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['exp', 'exp_p']
        self.out_map = {0: self.output['Out']}


212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'erf'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['erf', 'erf_p']
        self.out_map = {0: self.output['Out']}


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'log'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['log', 'log_p']
        self.out_map = {0: self.output['Out']}


252
class TestReshape2Orig2Prim(TestElementWiseAddOrig2Prim):
253

254 255 256 257
    def init_data(self):
        self.op_type = 'reshape2'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

258 259 260
        self.input = {
            'X': X,
        }
261
        self.output = {
262 263
            'Out':
            X,
264 265 266 267 268 269 270 271
            'XShape':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [6, 5]}

        self.orig2prim_args = (
            None,
            None,
272 273
            X,
        )
274 275 276 277 278 279
        self.all_ops = ['reshape2', 'reshape_p', 'fill_constant_p']
        # Do not checke XShape
        self.out_map = {0: self.output['Out']}


class TestConcatOrig2Prim(TestElementWiseAddOrig2Prim):
280

281 282 283 284 285
    def init_data(self):
        self.op_type = 'concat'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[3, 6], dtype='int64')

286 287 288
        self.input = {
            'X': [X, Y],
        }
289 290 291 292 293 294 295 296
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.orig2prim_args = (
            None,
297 298
            (X, Y),
        )
299 300 301 302 303
        self.all_ops = ['concat', 'concat_p']
        self.out_map = {0: self.output['Out']}


class TestSliceOrig2Prim(TestElementWiseAddOrig2Prim):
304

305 306 307 308
    def init_data(self):
        self.op_type = 'slice'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

309 310 311
        self.input = {
            'Input': X,
        }
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'axes': [0],
            'starts': [1],
            'ends': [4],
        }

        self.orig2prim_args = (None, None, X, None, None)
        self.all_ops = ['slice', 'slice_select_p']
        self.out_map = {0: self.output['Out']}


class TestFillZerosLikeOrig2Prim(TestElementWiseAddOrig2Prim):
328

329 330 331 332
    def init_data(self):
        self.op_type = 'fill_zeros_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

333 334 335
        self.input = {
            'X': X,
        }
336 337 338 339 340 341 342 343 344 345 346
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_zeros_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class TestFillAnyLikeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


class TestFillAnyLikeOrig2Prim2(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'dtype': paddle.float32, 'value': 5}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


387
class TestSumOrig2Prim(TestElementWiseAddOrig2Prim):
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    def init_data(self):
        self.op_type = 'sum'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = ((X, Y), )
        self.all_ops = ['sum', 'add_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim1(TestElementWiseAddOrig2Prim):
407

408 409 410 411
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

412 413 414
        self.input = {
            'X': X,
        }
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 1,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
        self.all_ops = ['p_norm', 'reshape_p', 'sqrt_p', 'reduce_p', 'mul_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim2(TestElementWiseAddOrig2Prim):
430

431 432 433 434
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

435 436 437
        self.input = {
            'X': X,
        }
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 2,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
        self.all_ops = ['p_norm', 'reshape_p', 'sqrt_p', 'reduce_p', 'mul_p']
        self.out_map = {0: self.output['Out']}


class TestIndexSelectOrig2Prim(TestElementWiseAddOrig2Prim):
453

454 455 456 457 458 459 460 461 462 463
    def init_data(self):
        self.op_type = 'index_select'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Index = paddle.static.data(name='Index', shape=[2], dtype='int32')

        self.input = {'X': X, 'Index': Index}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
464 465 466
        self.attrs = {
            'dim': 0,
        }
467 468 469

        self.orig2prim_args = (
            Index,
470 471
            X,
        )
472 473 474 475 476
        self.all_ops = ['index_select', 'gather_p']
        self.out_map = {0: self.output['Out']}


class TestElementwiseSubOrig2Prim(TestElementWiseAddOrig2Prim):
477

478 479 480 481 482 483 484 485 486 487
    def init_data(self):
        self.op_type = 'elementwise_sub'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int32')
        Y = paddle.static.data(name='Y', shape=[6], dtype='int32')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
488 489 490
        self.attrs = {
            'dim': 0,
        }
491 492 493

        self.orig2prim_args = (
            X,
494 495
            Y,
        )
496 497 498 499 500
        self.all_ops = ['elementwise_sub', 'broadcast_p', 'sub_p']
        self.out_map = {0: self.output['Out']}


class TestScaleOrig2Prim(TestElementWiseAddOrig2Prim):
501

502 503 504 505
    def init_data(self):
        self.op_type = 'scale'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

506 507 508
        self.input = {
            'X': X,
        }
509 510 511 512 513 514 515 516
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'scale': 2.0, 'bias': 1.0, 'bias_after_scale': True}

        self.orig2prim_args = (
            None,
517 518
            X,
        )
519 520 521 522 523 524 525
        self.all_ops = [
            'scale', 'fill_constant_p', 'fill_constant_p', 'mul_p', 'add_p'
        ]
        self.out_map = {0: self.output['Out']}


class TestAssignOrig2Prim(TestElementWiseAddOrig2Prim):
526

527 528 529 530
    def init_data(self):
        self.op_type = 'assign'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

531 532 533
        self.input = {
            'X': X,
        }
534 535 536 537 538 539 540 541 542 543 544
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['assign', 'fill_constant_p', 'add_p']
        self.out_map = {0: self.output['Out']}


545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
class TestWhereOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'where'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.orig2prim_args = (Cond, X, Y)
        self.all_ops = ['where', 'select_p']
        self.out_map = {0: self.output['Out']}


class TestEqualOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['equal', 'eq_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestPowOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_pow', 'pow_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_max'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_max', 'max_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'gelu', 'add_p', 'erf_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'mul_p', 'mul_p', 'mul_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': True}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'add_p', 'add_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'gelu',
            'mul_p', 'mul_p', 'mul_p', 'mul_p', 'pow_p', 'tanh_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


668 669
if __name__ == '__main__':
    unittest.main()