requantize_mkldnn_op.cc 5.9 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iterator>  // NOLINT
16
#include "dnnl.hpp"  // NOLINT
X
xiaolil1 已提交
17 18 19 20 21 22 23 24
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/requantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

25 26
using dnnl::memory;
using dnnl::reorder;
X
xiaolil1 已提交
27
using platform::to_void_cast;
28
using Tensor = phi::DenseTensor;
X
xiaolil1 已提交
29

30 31 32 33 34 35 36 37
namespace {

inline uint8_t clip_to_uint8(float x) {
  return std::max(0L, std::min(255L, std::lround(x)));
}

}  // namespace

X
xiaolil1 已提交
38 39 40 41
template <typename T>
class ReQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
42
    auto* input = ctx.Input<phi::DenseTensor>("Input");
X
xiaolil1 已提交
43
    auto scale_in = ctx.Attr<float>("Scale_in");
44
    auto shift_in = ctx.Attr<float>("Shift_in");
X
xiaolil1 已提交
45
    auto scale_out = ctx.Attr<float>("Scale_out");
46 47
    auto shift_out = ctx.Attr<float>("Shift_out");
    bool with_shift = shift_in != 0.0f || shift_out != 0.0f;
48
    auto* output = ctx.Output<phi::DenseTensor>("Output");
49

50
    PADDLE_ENFORCE_NE(
51 52
        scale_in,
        0.0f,
53 54
        platform::errors::InvalidArgument("Scale of input cannot be 0.0"));
    PADDLE_ENFORCE_NE(
55 56
        scale_out,
        0.0f,
57
        platform::errors::InvalidArgument("Scale of output cannot be 0.0"));
58 59
    if (shift_in != 0.0f) {
      PADDLE_ENFORCE_EQ(
60 61
          framework::TransToProtoVarType(input->dtype()),
          framework::proto::VarType::UINT8,
62 63 64 65
          platform::errors::Unimplemented("Requantize does not support nonzero "
                                          "shift for signed input."));
    }

X
xiaolil1 已提交
66 67 68 69
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

70
    auto src_tz = phi::vectorize(input->dims());
X
xiaolil1 已提交
71

72 73
    float reorder_scale = scale_out / scale_in;

74 75
    std::string key = platform::CreateKey(
        dev_ctx, src_tz, scale_in, scale_out, ctx.OutputName("Output"));
76
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
77 78 79
    const std::string key_prim = key + "@r";
    const std::string key_src_mem = key + "@s";
    const std::string key_dst_mem = key + "@d";
X
xiaolil1 已提交
80

81 82 83 84
    std::shared_ptr<dnnl::memory> src_memory;
    std::shared_ptr<dnnl::memory> dst_memory;
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
X
xiaolil1 已提交
85

86
    const T* input_data = input->data<T>();
A
Adam 已提交
87

88
    if (reorder_p == nullptr) {
89 90
      auto src_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(input->dtype()));
91
      auto dst_dt = with_shift ? framework::MKLDNNDataType::u8 : src_dt;
92

93
      src_memory = std::make_shared<dnnl::memory>(
94 95 96 97 98 99 100 101
          input->mem_desc(), engine, to_void_cast<T>(input_data));

      auto xstrides = input->mem_desc().data.format_desc.blocking.strides;

      std::vector<dnnl_dim_t> vstrides(xstrides,
                                       xstrides + input->mem_desc().data.ndims);

      auto dst_md = dnnl::memory::desc({src_tz}, dst_dt, vstrides);
102 103 104 105 106

      dnnl::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, {reorder_scale});
      if (with_shift) {
107
        dnnl::post_ops post_operations;
108 109 110 111 112 113 114 115 116 117 118 119 120
        post_operations.append_sum();
        attri.set_post_ops(post_operations);
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        uint8_t reorder_shift =
            clip_to_uint8(shift_out - reorder_scale * shift_in);
        std::memset(output_data, reorder_shift, output->numel());
        dst_memory = std::make_shared<dnnl::memory>(
            dst_md, engine, to_void_cast<uint8_t>(output_data));
      } else {
        T* output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory = std::make_shared<dnnl::memory>(
            dst_md, engine, to_void_cast<T>(output_data));
      }
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

      auto reorder_pd =
          reorder::primitive_desc(*src_memory, *dst_memory, attri);
      reorder_p = std::make_shared<reorder>(reorder_pd);

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
      src_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_dst_mem));
136 137 138 139 140 141 142 143 144 145 146
      if (with_shift) {
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        uint8_t reorder_shift =
            clip_to_uint8(shift_out - reorder_scale * shift_in);
        std::memset(output_data, reorder_shift, output->numel());
        dst_memory->set_data_handle(output_data);

      } else {
        T* output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory->set_data_handle(output_data);
      }
147 148
    }

149
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
150 151 152

    reorder_p->execute(astream, *src_memory, *dst_memory);
    astream.wait();
X
xiaolil1 已提交
153

154
    output->set_mem_desc(dst_memory->get_desc());
X
xiaolil1 已提交
155 156 157 158 159 160 161 162
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

163 164 165 166 167
REGISTER_OP_KERNEL(requantize,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::ReQuantOpKernel<int8_t>,
                   ops::ReQuantOpKernel<uint8_t>,
168
                   ops::ReQuantOpKernel<paddle::platform::bfloat16>);