fc_mkldnn_op.cc 25.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
20
#include "paddle/phi/backends/onednn/onednn_reuse.h"
21

M
mozga-intel 已提交
22 23 24
namespace paddle {
namespace operators {

25 26 27 28 29
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
30 31
using framework::DDim;
using framework::ExecutionContext;
32
using phi::OneDNNContext;
33 34
using phi::funcs::OneDNNGetDataType;
using phi::funcs::to_void_cast;
35

36 37 38 39 40 41 42
struct InnerProductCache {
  dnnl::inner_product_forward inner_product_p;
  dnnl::memory src_mem;
  dnnl::memory weights_mem;
  dnnl::memory bias_mem;
  dnnl::memory dst_mem;
};
M
Michał Gallus 已提交
43
template <typename T_in, typename T_w, typename T_out>
44
class FCMKLDNNHandler
45 46
    : public phi::funcs::OneDNNHandlerNoCachingT<T_in,
                                                 dnnl::inner_product_forward> {
M
mozga-intel 已提交
47
 public:
48
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
49
                  const OneDNNContext& dev_ctx,
50 51 52 53
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
54
                  const int in_num_col_dims,
55
                  dnnl::engine onednn_engine,
56
                  platform::Place cpu_place)
57
      : phi::funcs::OneDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
58
            onednn_engine, cpu_place),
59 60 61 62 63 64 65 66 67
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
68 69
    }

70 71 72
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
73
    }
74

75
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
76

77
    dnnl::memory::desc bias_md;
78

79
    auto src_md = dnnl::memory::desc(
80
        {MB, IC}, OneDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
81
    auto weights_md = dnnl::memory::desc(
82
        {OC, IC}, OneDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
83
    auto dst_md = dnnl::memory::desc(
84
        {MB, OC}, OneDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
85 86
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
87
                                   OneDNNGetDataType<float>(),
88 89
                                   dnnl::memory::format_tag::a);
    }
90

91
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
92

93 94 95 96 97 98
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
99 100
  }

101
 private:
102 103 104
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
105

106 107
    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
108
    if (phi::funcs::is_int8<T_w>()) {
109 110 111
      std::vector<float> output_shift_scale;
      std::tie(output_shift_scale, sum_scale, activation_scale) =
          GetOutputScales(ctx);
112
      int mask = CreateMask(1, output_shift_scale.size() > 1);
113
      attributes.set_output_scales(mask, output_shift_scale);
114
    }
115

116 117
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
118
      post_operations.append_sum(sum_scale);
119
    }
M
mozga-intel 已提交
120

121 122 123
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
      post_operations.append_eltwise(
124
          activation_scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
125
    }
126
    AppendActivation(ctx, post_operations, activation_scale);
127

128 129 130 131 132 133
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

134 135
    attributes.set_post_ops(post_operations);
    return attributes;
136 137
  }

M
Michał Gallus 已提交
138 139
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  std::vector<float> GetBiasScales(const framework::ExecutionContext& ctx) {
    if (ctx.HasAttr("Bias_scales")) {
      return ctx.Attr<std::vector<float>>("Bias_scales");
    } else {
      const float scale_in = ctx.Attr<float>("Scale_in");
      const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");
      std::vector<float> bias_scales(scale_weights.size());

      for (size_t i = 0; i < bias_scales.size(); ++i) {
        if (scale_weights[i] == 0.0)
          bias_scales[i] = 1.0f;
        else
          bias_scales[i] = scale_in * scale_weights[i];
      }
      return bias_scales;
M
Michał Gallus 已提交
155 156 157
    }
  }

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  void AppendActivation(const ExecutionContext& ctx,
                        dnnl::post_ops& post_ops,  // NOLINT
                        float activation_scale = 1.0f) {
    const auto invalid_attribute =
        ctx.HasAttr("fuse_activation")
            ? ctx.Attr<std::string>("fuse_activation").empty()
            : true;
    if (invalid_attribute) return;

    const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
    const auto fuse_alpha =
        ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
    const auto fuse_beta =
        ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

    if (fuse_activation == "hard_sigmoid") {
      post_ops.append_eltwise(activation_scale,
                              dnnl::algorithm::eltwise_linear,
                              fuse_alpha,
                              fuse_beta);
      post_ops.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
    } else {
      const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
          {"abs", dnnl::algorithm::eltwise_abs},
          {"clip", dnnl::algorithm::eltwise_clip},
          {"gelu", dnnl::algorithm::eltwise_gelu_erf},
          {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
          {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
          {"hard_swish", dnnl::algorithm::eltwise_hardswish},
          {"leaky_relu", dnnl::algorithm::eltwise_relu},
          {"mish", dnnl::algorithm::eltwise_mish},
          {"relu", dnnl::algorithm::eltwise_relu},
          {"relu6", dnnl::algorithm::eltwise_bounded_relu},
          {"sigmoid", dnnl::algorithm::eltwise_logistic},
          {"sqrt", dnnl::algorithm::eltwise_sqrt},
          {"swish", dnnl::algorithm::eltwise_swish},
          {"tanh", dnnl::algorithm::eltwise_tanh}};

      const auto& activation_type = activation_map.find(fuse_activation);

      PADDLE_ENFORCE_NE(
          activation_type,
          activation_map.end(),
          platform::errors::InvalidArgument(
              "Activation '%s' not found in oneDNN algorithms mapper",
              fuse_activation));

      post_ops.append_eltwise(
          activation_scale, activation_type->second, fuse_alpha, fuse_beta);
    }
  }

M
Michał Gallus 已提交
211 212 213 214 215
  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
216
  std::tuple<std::vector<float>, float, float> GetOutputScales(
217
      const ExecutionContext& ctx) {
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    if (ctx.HasAttr("Sum_scale")) {
      return std::make_tuple(ctx.Attr<std::vector<float>>("Output_shift_scale"),
                             ctx.Attr<float>("Sum_scale"),
                             ctx.Attr<float>("Activation_scale"));
    } else {
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      bool fuse_residual_conn = ctx.HasAttr("fuse_residual_connection") &&
                                ctx.Attr<bool>("fuse_residual_connection");
      auto scale_in_eltwise_data = ctx.HasAttr("Scale_in_eltwise")
                                       ? ctx.Attr<float>("Scale_in_eltwise")
                                       : 1.0f;

      // If the output will be in floats, we don't multiply by scale_out.

      float activation_scale = (!force_fp32_output && has_activation)
                                   ? ctx.Attr<float>("Scale_out")
                                   : 1.0f;
      float scale_out_data = (force_fp32_output || has_activation)
                                 ? 1.0f
                                 : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
      const size_t weight_scales_num = scale_weights_data.size();

      for (size_t i = 0; i < weight_scales_num; ++i) {
        if (scale_weights_data[i] == 0.0)
          scale_weights_data[i] = scale_out_data;
        else
          scale_weights_data[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }
      return std::make_tuple(scale_weights_data, sum_scale, activation_scale);
M
Michał Gallus 已提交
253 254 255 256 257 258 259 260 261 262 263
    }
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

264 265 266 267 268 269
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
270

271 272 273 274 275
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
276

277
    auto& astream = OneDNNContext::tls().get_stream();
278 279 280 281 282 283 284 285 286 287 288
    {
      platform::RecordEvent record_reorder(
          "int_reorder",
          platform::TracerEventType::UserDefined,
          1,
          platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    }
M
Michał Gallus 已提交
289

290 291
    return target_memory_p;
  }
292

293
  std::string memory_key_;
294
  const OneDNNContext& dev_ctx_;
M
Michał Gallus 已提交
295

296
 public:
297 298
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
299 300 301 302 303 304 305
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
306 307
    }

308 309
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
310
  }
M
mozga-intel 已提交
311

312
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
313
      const framework::ExecutionContext& ctx, const phi::DenseTensor* bias) {
314 315
    const float* bias_data = bias->data<float>();

316
    if (phi::funcs::is_int8<T_w>() == false) {
317 318 319 320 321 322 323 324 325
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
326
        const auto& scale_data = GetBiasScales(ctx);
327 328 329 330 331 332
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
333
                                          OneDNNGetDataType<float>(),
334 335 336 337 338 339 340
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
341
        this->dev_ctx_.SetBlob(bias_key, memory_p);
342 343 344 345 346 347
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
348
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
349 350 351
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
352

353 354 355 356 357
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
358
                                        OneDNNGetDataType<float>(),
359 360
                                        dnnl::memory::format_tag::io);

361
      if (phi::funcs::is_int8<T_w>()) {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
381
  }
M
mozga-intel 已提交
382

383
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
384
      const ExecutionContext& ctx, phi::DenseTensor* out) {
385 386
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
387
      auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
388 389

      PADDLE_ENFORCE_EQ(
390
          out->dims(),
391
          residual_param->dims(),
392 393 394 395
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
396
              out->dims().size(),
397
              residual_param->dims().size()));
398

399
      out->ShareDataWith(*residual_param);
400
    }
401
    return this->template AcquireDstMemory<T_out>(out);
402 403
  }  // namespace operators
};   // namespace paddle
404

405 406 407 408 409 410 411 412 413 414
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
415 416 417 418 419
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
420

421 422 423
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
424
                               } else if (phi::funcs::is_int8<T_in>()) {
425 426 427 428 429 430 431 432 433
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
434 435
  }

436 437
  void PrepareSrcMem(const std::shared_ptr<inner_product_forward>& fc_p,
                     const std::shared_ptr<dnnl::memory>& src_mem,
438
                     const phi::DenseTensor* x,
439 440 441 442 443 444
                     const dnnl::engine& engine) const {
    auto x_md = x->mem_desc().reshape(src_mem->get_desc().dims());
    if (x_md != src_mem->get_desc()) {
      dnnl::memory x_mem(x_md, engine, to_void_cast<T_in>(x->data<T_in>()));
      auto reorder_p = dnnl::reorder(x_mem, *src_mem);

445
      auto& astream = OneDNNContext::tls().get_stream();
446 447 448 449 450 451 452
      reorder_p.execute(astream, x_mem, *src_mem);
      astream.wait();
    } else {
      src_mem->set_data_handle(to_void_cast<T_in>(x->data<T_in>()));
    }
  }

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  void SetOutMemDescWithUnsqueeze2FuseSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    const std::vector<int>& fused_unsqueeze2_axes =
        ctx.Attr<std::vector<int>>("fused_unsqueeze2_axes");
    const std::vector<int64_t>& op_tz = out_md.dims();
    std::vector<int64_t> unsqueezed_op_tz(
        op_tz.size() + fused_unsqueeze2_axes.size(), 0);

    for (const auto& axis : fused_unsqueeze2_axes) {
      int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis;
      unsqueezed_op_tz[positive_axis] = 1;
    }

    int j = 0;
    for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) {
      if (unsqueezed_op_tz[i] == 0) {
        unsqueezed_op_tz[i] = op_tz[j++];
      }
    }
    out->set_mem_desc(out_md.reshape(unsqueezed_op_tz));
    out->Resize(phi::make_ddim(unsqueezed_op_tz));
  }

  void SetOutMemDescWithReshape2FuseSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    std::vector<int64_t> fused_reshape2_shape(
        ctx.Attr<std::vector<int>>("fused_reshape2_shape").begin(),
        ctx.Attr<std::vector<int>>("fused_reshape2_shape").end());

    const int out_shape_numel = out->numel();
    const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(),
                                                fused_reshape2_shape.end(),
                                                1,
                                                std::multiplies<int64_t>());

    for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) {
      if (fused_reshape2_shape[i] == -1) {
        fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel;
        break;
      }
    }

    out->set_mem_desc(out_md.reshape(fused_reshape2_shape));
    out->Resize(phi::make_ddim(fused_reshape2_shape));
  }

  void SetOutMemDescWithLogicalLayoutFusesSupport(
      const framework::ExecutionContext& ctx,
      phi::DenseTensor* out,
      const dnnl::memory::desc& out_md) const {
    if (ctx.HasAttr("fused_unsqueeze2_axes")) {
      SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md);
    } else if (ctx.HasAttr("fused_reshape2_shape")) {
      SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md);
    } else if (ctx.HasAttr("fused_squeeze2_axes")) {
      out->set_mem_desc(out_md);
      out->Resize(phi::make_ddim(out_md.dims()));
    } else {
      out->set_mem_desc(out_md);
    }
  }

519
  template <typename T_out, typename T_w>
520
  void RunKernel(const framework::ExecutionContext& ctx) const {
521
    const auto& dev_ctx = ctx.template device_context<OneDNNContext>();
522
    const auto& onednn_engine = dev_ctx.GetEngine();
523

524
    const auto* x = ctx.Input<phi::DenseTensor>("Input");
525 526
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
527
    auto out = ctx.Output<phi::DenseTensor>("Out");
528 529 530

    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

531 532 533 534 535 536 537 538
    std::shared_ptr<dnnl::inner_product_forward> fc_p;
    std::shared_ptr<dnnl::memory> src_memory_p;
    std::shared_ptr<dnnl::memory> weights_memory_p;
    std::shared_ptr<dnnl::memory> bias_memory_p;
    std::shared_ptr<dnnl::memory> dst_memory_p;

    std::string cache_key;
    cache_key.reserve(64);
539
    cache_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded(
540
        dev_ctx,
541 542 543 544
        phi::funcs::CreateKey(dev_ctx,
                              ctx.InputName("Input"),
                              ctx.InputName("W"),
                              phi::vectorize(x->dims())));
545 546 547 548

    auto inner_product_cache =
        std::static_pointer_cast<InnerProductCache>(dev_ctx.GetBlob(cache_key));

549 550
    RecomputeOutputDims(ctx, x, weights, out);

551 552 553 554 555
    if (inner_product_cache) {
      fc_p = std::make_shared<dnnl::inner_product_forward>(
          inner_product_cache->inner_product_p);
      src_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->src_mem);
556
      PrepareSrcMem(fc_p, src_memory_p, x, onednn_engine);
557 558 559 560 561 562 563 564

      weights_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->weights_mem);

      dst_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->dst_mem);
      if (ctx.HasAttr("fuse_residual_connection") &&
          ctx.Attr<bool>("fuse_residual_connection")) {
565
        auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        out->ShareDataWith(*residual_param);
      }
      auto out_ptr = out->mutable_data<T_out>(
          ctx.GetPlace(), dst_memory_p->get_desc().get_size());
      dst_memory_p->set_data_handle(out_ptr);

      if (bias) {
        bias_memory_p =
            std::make_shared<dnnl::memory>(inner_product_cache->bias_mem);
      }
    } else {
      auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

      FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                                dev_ctx,
                                                x,
                                                weights,
                                                bias,
                                                out,
                                                in_col_dims,
586
                                                onednn_engine,
587 588 589 590 591 592 593 594
                                                ctx.GetPlace());

      src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
      weights_memory_p =
          handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
      dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

      if (bias) {
595
        bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias);
596 597 598 599 600
      }

      fc_p = handler.AcquireForwardPrimitive();
    }

601
    auto& astream = OneDNNContext::tls().get_stream();
602 603 604 605 606 607 608 609 610 611 612 613 614

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

615 616 617 618 619 620 621 622 623 624 625 626
    if (!inner_product_cache) {
      auto ip_cache = std::make_shared<InnerProductCache>();
      ip_cache->inner_product_p = *fc_p;
      ip_cache->src_mem = *src_memory_p;
      ip_cache->weights_mem = *weights_memory_p;
      ip_cache->dst_mem = *dst_memory_p;
      if (bias) {
        ip_cache->bias_mem = *bias_memory_p;
      }
      dev_ctx.SetBlob(cache_key, ip_cache);
    }

627
    SetOutMemDescWithLogicalLayoutFusesSupport(
628 629
        ctx,
        out,
630
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
631
  }
M
mozga-intel 已提交
632

633
  void RecomputeOutputDims(const ExecutionContext& ctx,
634
                           const phi::DenseTensor* x,
635
                           const phi::DenseTensor* weights,
636
                           phi::DenseTensor* out) const {
L
luotao1 已提交
637
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
638
    bool padding_weights = ctx.Attr<bool>("padding_weights");
639 640
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
641 642
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
643
    std::vector<int64_t> output_dims;
644 645
    FCOutputSize(x->dims(),
                 weights->dims(),
646 647
                 output_dims,
                 in_num_col_dims,
648
                 padding_weights);
649 650
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
651 652
  }
};
M
mozga-intel 已提交
653 654 655 656

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
657 658 659 660
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
661 662 663

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
664
                   ::phi::CPUPlace,
665 666 667 668
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);