utils.py 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
L
levi131 已提交
17
from paddle.autograd.functional import _tensors
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


def _product(t):
    if isinstance(t, int):
        return t
    else:
        return np.product(t)


def _get_item(t, idx):
    assert isinstance(t, paddle.Tensor), "The first argument t must be Tensor."
    assert isinstance(idx,
                      int), "The second argument idx must be an int number."
    flat_t = paddle.reshape(t, [-1])
    return flat_t.__getitem__(idx)


def _set_item(t, idx, value):
    assert isinstance(t, paddle.Tensor), "The first argument t must be Tensor."
    assert isinstance(idx,
                      int), "The second argument idx must be an int number."
    flat_t = paddle.reshape(t, [-1])
    flat_t.__setitem__(idx, value)
    return paddle.reshape(flat_t, t.shape)


def _compute_numerical_jacobian(func, xs, delta, np_dtype):
L
levi131 已提交
45 46
    xs = _tensors(xs, "xs")
    ys = _tensors(func(*xs), "ys")
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    fin_size = len(xs)
    fout_size = len(ys)
    jacobian = list([] for _ in range(fout_size))
    for i in range(fout_size):
        jac_i = list([] for _ in range(fin_size))
        for j in range(fin_size):
            jac_i[j] = np.zeros(
                (_product(ys[i].shape), _product(xs[j].shape)), dtype=np_dtype)
        jacobian[i] = jac_i

    for j in range(fin_size):
        for q in range(_product(xs[j].shape)):
            orig = _get_item(xs[j], q)
            x_pos = orig + delta
            xs[j] = _set_item(xs[j], q, x_pos)
L
levi131 已提交
62
            ys_pos = _tensors(func(*xs), "ys_pos")
63 64 65

            x_neg = orig - delta
            xs[j] = _set_item(xs[j], q, x_neg)
L
levi131 已提交
66
            ys_neg = _tensors(func(*xs), "ys_neg")
67 68 69 70 71 72 73 74 75 76 77 78

            xs[j] = _set_item(xs[j], q, orig)

            for i in range(fout_size):
                for p in range(_product(ys[i].shape)):
                    y_pos = _get_item(ys_pos[i], p)
                    y_neg = _get_item(ys_neg[i], p)
                    jacobian[i][j][p][q] = (y_pos - y_neg) / delta / 2.
    return jacobian


def _compute_numerical_hessian(func, xs, delta, np_dtype):
L
levi131 已提交
79 80
    xs = _tensors(xs, "xs")
    ys = _tensors(func(*xs), "ys")
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    fin_size = len(xs)
    hessian = list([] for _ in range(fin_size))
    for i in range(fin_size):
        hessian_i = list([] for _ in range(fin_size))
        for j in range(fin_size):
            hessian_i[j] = np.zeros(
                (_product(xs[i].shape), _product(xs[j].shape)), dtype=np_dtype)
        hessian[i] = hessian_i

    for i in range(fin_size):
        for p in range(_product(xs[i].shape)):
            for j in range(fin_size):
                for q in range(_product(xs[j].shape)):
                    orig = _get_item(xs[j], q)
                    x_pos = orig + delta
                    xs[j] = _set_item(xs[j], q, x_pos)
                    jacobian_pos = _compute_numerical_jacobian(func, xs, delta,
                                                               np_dtype)
                    x_neg = orig - delta
                    xs[j] = _set_item(xs[j], q, x_neg)
                    jacobian_neg = _compute_numerical_jacobian(func, xs, delta,
                                                               np_dtype)
                    xs[j] = _set_item(xs[j], q, orig)
                    hessian[i][j][p][q] = (
                        jacobian_pos[0][i][0][p] - jacobian_neg[0][i][0][p]
                    ) / delta / 2.
    return hessian
L
levi131 已提交
108 109


110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def _compute_numerical_batch_jacobian(func, xs, delta, np_dtype):
    no_batch_jacobian = _compute_numerical_jacobian(func, xs, delta, np_dtype)
    xs = _tensors(xs, "xs")
    ys = _tensors(func(*xs), "ys")
    fin_size = len(xs)
    fout_size = len(ys)
    bs = xs[0].shape[0]
    bat_jac = []
    for i in range(fout_size):
        batch_jac_i = []
        for j in range(fin_size):
            jac = no_batch_jacobian[i][j]
            jac_shape = jac.shape
            out_size = jac_shape[0] // bs
            in_size = jac_shape[1] // bs
            jac = np.reshape(jac, (bs, out_size, bs, in_size))
            batch_jac_i_j = np.zeros(shape=(out_size, bs, in_size))
            for p in range(out_size):
                for b in range(bs):
                    for q in range(in_size):
                        batch_jac_i_j[p][b][q] = jac[b][p][b][q]
            batch_jac_i_j = np.reshape(batch_jac_i_j, (out_size, -1))
            batch_jac_i.append(batch_jac_i_j)
        bat_jac.append(batch_jac_i)

    return bat_jac


def _compute_numerical_batch_hessian(func, xs, delta, np_dtype):
    xs = _tensors(xs, "xs")
    batch_size = xs[0].shape[0]
    fin_size = len(xs)
    hessian = []
    for b in range(batch_size):
        x_l = []
        for j in range(fin_size):
            x_l.append(paddle.reshape(xs[j][b], shape=[1, -1]))
        hes_b = _compute_numerical_hessian(func, x_l, delta, np_dtype)
        if fin_size == 1:
            hessian.append(hes_b[0][0])
        else:
            hessian.append(hes_b)

    hessian_res = []
    for index in range(fin_size):
        x_reshape = paddle.reshape(xs[index], shape=[batch_size, -1])
        for index_ in range(fin_size):
            for i in range(x_reshape.shape[1]):
                tmp = []
                for j in range(batch_size):
                    if fin_size == 1:
                        tmp.extend(hessian[j][i])
                    else:
                        tmp.extend(hessian[j][i][index_][index])
                hessian_res.append(tmp)
        if fin_size == 1:
            return hessian_res

    hessian_result = []
    mid = len(hessian_res) // 2
    for i in range(mid):
        hessian_result.append(
            np.stack(
                (hessian_res[i], hessian_res[mid + i]), axis=0))
    return hessian_result


L
levi131 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
def _compute_numerical_vjp(func, xs, v, delta, np_dtype):
    xs = _tensors(xs, "xs")
    jacobian = np.array(_compute_numerical_jacobian(func, xs, delta, np_dtype))
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vjp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
            vjp[j][q] = np.sum(jacobian[:, j, :, q].reshape(flat_v.shape) *
                               flat_v)
    vjp = [vjp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vjp


def _compute_numerical_vhp(func, xs, v, delta, np_dtype):
    xs = _tensors(xs, "xs")
    hessian = np.array(_compute_numerical_hessian(func, xs, delta, np_dtype))
    flat_v = np.array([v_el.numpy().reshape(-1) for v_el in v])
    vhp = [np.zeros((_product(x.shape)), dtype=np_dtype) for x in xs]
    for j in range(len(xs)):
        for q in range(_product(xs[j].shape)):
            vhp[j][q] = np.sum(hessian[:, j, :, q].reshape(flat_v.shape) *
                               flat_v)
    vhp = [vhp[j].reshape(xs[j].shape) for j in range(len(xs))]
    return vhp