utils.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import typing
15 16 17 18

import paddle
from paddle.fluid import framework as framework

19 20
from .phi_ops_map import op_info, op_map

21

22
class PrimOption:
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
    def __init__(self):
        self.enable_prim = False

    def get_status(self):
        return self.enable_prim

    def set_status(self, flag):
        self.enable_prim = flag


prim_option = PrimOption()


@framework.static_only
def prim_enabled():
    """
39
    Note:
40
        **ONLY available in the static graph mode.**
41

42
    Shows whether the automatic differentiation mechanism based on
43
    automatic differential basic operators is ON. Defaults to OFF.
44

45 46 47 48 49 50 51 52 53
    Returns:
        flag(bool): Whether the automatic differentiation mechanism based on automatic differential basic operators is ON.

    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True

            disable_prim()

            print(prim_enabled()) # False
    """
    return prim_option.get_status()


@framework.static_only
def enable_prim():
    """
70
    Note:
71
        **ONLY available in the static graph mode.**
72

73
    Turns ON automatic differentiation mechanism based on automatic
74
    differential basic operators.
75

76 77 78 79 80 81
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, prim_enabled
82

83 84 85 86 87 88 89 90 91 92 93
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True
    """
    prim_option.set_status(True)


@framework.static_only
def disable_prim():
    """
94
    Note:
95
        **ONLY available in the static graph mode.**
96

97
    Turns OFF automatic differentiation mechanism based on automatic
98
    differential basic operators.
99

100 101 102 103 104 105
    Examples:

        .. code-block:: python

            import paddle
            from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            paddle.enable_static()
            enable_prim()

            print(prim_enabled()) # True

            disable_prim()

            print(prim_enabled()) # False
    """
    prim_option.set_status(False)


INT_DTYPE_2_STRING = {
    int(0): 'bool',
    int(1): 'int16',
    int(2): 'int32',
    int(3): 'int64',
    int(4): 'float16',
    int(5): 'float32',
    int(6): 'float64',
    int(20): 'uint8',
    int(21): 'int8',
    int(23): 'complex64',
    int(24): 'complex128',
}


def get_var_block(block, names):
    assert isinstance(names, list)
    if len(names) == 0:
        return None
    elif len(names) == 1:
        return block.var(names[0])
    else:
        return [block.var(name) for name in names]


def get_input_var_list(op):
    if op.input_names is None:
        return []
    else:
        return [
            get_var_block(op.block, op.input(n)) for n in sorted(op.input_names)
        ]


153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def _solve_arg(item):
    if "=" not in item:
        res = item
    else:
        res = item.split('=')[0]
    [arg_type, arg_name] = res.strip().split()
    return arg_type.strip(), arg_name.strip()


def _get_args_values(op, phi_name):
    "get attrs' values for api args' values"
    args = op_info[phi_name]
    args_list = args["args"].split(",")
    inputs = []
    attrs = []
    for item in args_list:
        arg_type, arg_name = _solve_arg(item)
        op_content = op_map[op.type]
        if arg_type in ("Tensor", "Tensor[]"):
            if (
                "inputs" in op_content.keys()
                and arg_name in op_content["inputs"].keys()
            ):
                inputs.append(op_content["inputs"][arg_name])
            else:
                inputs.append(arg_name)
        else:
            op_content = op_map[op.type]
            if (
                "attrs" in op_content.keys()
                and arg_name in op_content["attrs"].keys()
            ):
                attrs.append(op.attr(op_content["attrs"][arg_name]))
C
cyber-pioneer 已提交
186 187
            else:
                attrs.append(op.attr(arg_name))
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

    return inputs, attrs


def prepare_python_api_arguments(op):
    """
    Generate all args inputs of composite op. Because inputs of composite op is
    the same as phi op desribed in ops.yaml. So we need to map origin op to phi op
    and then push input data and attrs of origin op to correspondng phi op.
    """
    if op.input_names is None:
        return []
    else:
        if op.type in op_map:
            phi_name = op_map[op.type]["phi_name"]
        else:
            phi_name = op.type
        inputs, attrs = _get_args_values(op, phi_name)
        res = [get_var_block(op.block, op.input(n)) for n in inputs]
        if attrs:
            res.extend(attrs)
        return res


212 213 214 215 216 217 218 219 220 221
def get_output_var_list(op):
    if op.output_names is None:
        return []
    else:
        return [
            get_var_block(op.block, op.output(n))
            for n in sorted(op.output_names)
        ]


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def get_output_vars_from_comosite(op):
    """origin op outputs must be mapped into outputs of composite rule."""
    origin_output_names = op.output_names
    if origin_output_names is None:
        return []
    else:
        name = op.type
        res = []
        if op_map[name].get("outputs"):
            for item in op_map[name]["outputs"].keys():
                origin_output_name = op_map[name]["outputs"][item]
                if origin_output_name not in origin_output_names:
                    continue
                origin_output_var = get_var_block(op.block, op.output(origin_output_name))
                res.append(origin_output_var)
        elif len(origin_output_names) == 1:
            # When origin output num is 1, map info is not needed.
            origin_output_var = get_var_block(op.block, op.output(origin_output_names[0]))
            res.append(origin_output_var)
        else:
            raise ValueError("When replace op with composite rule, there must exist output map info from origin op to composite rule.")
        return res


246 247 248 249 250 251 252 253 254 255 256 257
def flatten(inp):
    if inp is None or isinstance(inp, paddle.fluid.framework.Variable):
        return [inp]
    flattened = []
    for part in inp:
        flattened += flatten(part)
    return flattened


def flatten_and_remove_none(inp):
    flattened = flatten(inp)
    return [var for var in flattened if var is not None]
258 259 260 261


def as_tensors(xs):
    if isinstance(xs, framework.Variable):
262
        return (xs,)
263 264 265 266
    elif isinstance(xs, typing.Sequence):
        return tuple(xs)
    else:
        return xs