sharding_optimizer.py 71.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
18
from paddle.static import default_startup_program, device_guard
19 20
from paddle.fluid import layers

21 22 23 24 25 26 27 28 29 30 31 32 33
from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
from .common import is_backward_op, is_optimizer_op, is_update_op
from .meta_optimizer_base import MetaOptimizerBase
from .sharding.shard import Shard, ProgramSegment
from .sharding.fp16_helper import FP16Utils
from .sharding.weight_decay_helper import WeightDecayHelper
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
from .sharding import utils
# FIXME: import *
from .sharding.utils import *

34
import logging
35 36 37 38 39 40
logger = logging.getLogger(__name__)
formatter = logging.Formatter(
    fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
41

42
__all__ = []
43 44 45


class ShardingOptimizer(MetaOptimizerBase):
46 47
    """Sharding Optimizer."""

48 49 50 51 52 53
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
54 55
            "LarsOptimizer",
            "LambOptimizer",
56 57
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
58 59 60 61 62 63 64 65 66 67 68
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
69 70 71 72
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
73 74 75 76 77 78 79 80 81 82 83 84 85 86

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
87
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
88

W
WangXi 已提交
89 90 91 92 93 94 95 96 97 98 99
    def _get_sharding_segment_strategy(self):
        """ get
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
100

W
WangXi 已提交
101 102
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
103
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
W
WangXi 已提交
104 105
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
106 107 108 109 110 111 112
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
W
WangXi 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
                    str(segment_strategy)))
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
        """ get
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
126

127
        # parallelism
W
WangXi 已提交
128 129 130 131 132 133 134
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
135 136
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
137 138 139 140 141 142
        if pp_degree > 1:
            assert strategy.pipeline is True

        assert global_world_size == mp_degree * sharding_degree * pp_degree * dp_degree, \
            "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, pp_degree, dp_degree)
143

J
JZ-LIANG 已提交
144
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
145
        if sharding_configs["hybrid_dp"]:
146
            logger.warning(
W
WangXi 已提交
147 148 149 150 151 152 153 154 155 156 157 158
                "[hybrid_dp] API setting is deprecated. Now when "
                "dp_degree >= 2, its will be in hybrid dp mode automatically")
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
        """ get
159 160
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
161 162
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
163
        self._optimizer_sharding
W
WangXi 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
177 178 179
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
180
                dp_mode = "pp_hybrid_dp"
181
            else:
W
WangXi 已提交
182 183 184 185
                assert self.sharding_degree > 1, \
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, " \
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                dp_mode = "sharding_hybrid_dp"
186

187
        # gradient merge
W
WangXi 已提交
188 189
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
190
        if self.pp_degree <= 1:
W
WangXi 已提交
191
            gm_mode = "sharding_gm"
192 193
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
194 195 196
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
        if gm_acc_step > 1:
197
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
W
WangXi 已提交
198
                gm_mode, gm_acc_step))
199

200 201 202 203 204 205 206 207
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
        if self.sharding_degree == 1 and self.dp_degree > 1 \
                and sharding_configs['_dp_as_optimizer_sharding'] \
                and self.pp_degree > 1:
            optimizer_sharding = True

W
WangXi 已提交
208 209 210
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
211
        self._optimizer_sharding = optimizer_sharding
212 213

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
214
        self.pp_allreduce_in_optimize = sharding_configs[
215
            "pp_allreduce_in_optimize"]
216

W
WangXi 已提交
217 218 219 220
    def _inner_opt_minimize(self, loss, startup_program, parameter_list,
                            no_grad_set):
        pipeline_configs = self.user_defined_strategy.pipeline_configs

221 222 223
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
224 225 226 227

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
W
WangXi 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
            }
245 246
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
247 248 249

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
W
WangXi 已提交
250
            assert self.pp_degree == len(program_list)
251 252 253
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
254 255 256

        if startup_program is None:
            startup_program = default_startup_program()
257 258 259

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
260 261
            print("pp_rank:", self.pp_rank)
            main_program = program_list[self.pp_rank]
262 263 264 265 266 267 268 269 270 271 272
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

273 274 275 276
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

277 278 279 280 281
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
282
        return optimize_ops, params_grads
283

W
WangXi 已提交
284 285 286 287 288
    def _apply_sharding_pass(self, params_grads):
        if self.sharding_degree == 1: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
289

W
WangXi 已提交
290
        # step1: build shard
291 292
        self._build_shard(params_grads, self.sharding_rank,
                          self.sharding_degree)
293

W
WangXi 已提交
294 295
        # step2: split_program
        self._split_program(main_block)
296

W
WangXi 已提交
297 298 299 300
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
301

W
WangXi 已提交
302
        # step4: remove unneeded ops and vars from block
303 304 305 306 307 308 309 310 311 312 313
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
        """ outer dp as optimizer sharding """
        if self._optimizer_sharding is False: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
W
WangXi 已提交
329
        if self.pp_degree == 1: return
330

W
WangXi 已提交
331
        strategy = self.user_defined_strategy
332

W
WangXi 已提交
333 334 335 336 337 338 339 340 341 342 343 344
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
345 346
                        main_block._remove_op(idx)

W
WangXi 已提交
347 348 349 350 351 352 353 354
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

355 356 357 358 359
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
360
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
361
            main_block, strategy=strategy, shard=shard)
362 363 364 365

        len_of_ops = len(main_block.ops)
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
366
        if self.pp_allreduce_in_optimize:
367 368 369 370 371 372
            logger.info("Pipeline Persistable grad is {}".format(
                accumulated_grad_names))
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
373 374 375 376 377 378
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
379 380 381 382 383 384 385
                use_calc_stream=True,
                rank=self.sharding_rank)

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
                strategy=strategy)
            logger.info("Optimizer grad in this rank {}".format(
                accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
                self.dp_ring_id, [x[0].name for x in params_grads],
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
                strategy=strategy)
            logger.info("Optimizer param in this rank {}".format(
                optimizer_param))
            if not strategy.fuse_grad_merge:
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
416 417 418 419 420 421 422 423 424 425 426 427
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
                user_defined_strategy=strategy)
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
428

W
WangXi 已提交
429
    def _adapt_amp_clip_without_sharding(self):
430 431
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
432 433
        if self.sharding_degree > 1: return
        if self._optimizer_sharding: return
434

W
WangXi 已提交
435 436 437 438 439
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # FIXME(wangxi): mp should prune duplicated param_grads when calc
        # amp inf_var & clip global_norm_var
440

441 442 443 444 445
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
446

W
WangXi 已提交
447 448 449 450 451 452 453 454
        gradientclip_helper = GradientClipHelper(None)
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id])

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
455 456 457
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
458
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
459

460 461
        main_block._sync_with_cpp()

W
WangXi 已提交
462 463 464 465 466 467 468 469 470 471
    def _apply_optimize_offload_pass(self):
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
472
            logger.info("Sharding with optimize offload !")
473 474
            offload_helper = OffloadHelper()
            offload_helper.offload(main_block, startup_block)
475
            # The optimize_cast is already included in offload_fp32param
476
            offload_helper.offload_fp32param(main_block, startup_block)
477 478 479 480 481 482
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
            offload_helper = OffloadHelper()
            offload_helper.cast_fp32param_in_optimize(main_block, startup_block)
483

W
WangXi 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
            loss, startup_program, parameter_list, no_grad_set)

        self._init_comm()

        self._apply_sharding_pass(params_grads)

519 520 521
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
522 523 524 525 526 527

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

528
        # apply optimize offload or optimize cast
W
WangXi 已提交
529 530
        self._apply_optimize_offload_pass()

531
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
532
        self._sharding_gradient_merge()
533 534 535 536 537 538

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
539

W
WangXi 已提交
540 541 542
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
543

W
WangXi 已提交
544
        self._dump_program_for_debug()
545

546 547 548
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
549 550
        return optimize_ops, params_grads

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            pp_group_endpoints,
            pp_rank,
            ring_id,
            False,
            sync=False)

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
        send_to_next_pair = (self.pp_rank,
                             (self.pp_rank + 1) % self.pp_degree)  # 2->3
        recv_from_next_pair = ((self.pp_rank + 1) % self.pp_degree,
                               self.pp_rank)  # 3->2
        recv_from_prev_pair = ((self.pp_rank - 1 + self.pp_degree) %
                               self.pp_degree, self.pp_rank)  # 1->2
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(pair,
                                                                       ring_id))

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 1)  # 3->0 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1],
                max_ring_id + 2)  # 0->3 not in pp_ring_map
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
638 639 640 641 642 643 644 645 646
        self._collective_helper._init_communicator(
            self._startup_program,
            self.current_endpoint,
            self.pp_group_endpoints,
            self.pp_rank,
            self.pp_ring_id,
            False,
            sync=False)

647 648 649 650 651 652 653 654 655 656 657 658
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

659
    def _init_comm(self):
660
        # sync var
661 662
        startup_block = self._startup_program.global_block()

663
        # mp ring
664 665 666 667 668 669 670 671 672 673
        if self.mp_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False)

674
        # sharding ring
675 676 677 678 679 680 681 682 683 684
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

685 686
        # pp ring
        if self.pp_degree > 1:
687
            self._init_pipeline_comm(startup_block)
688 689

        # pure dp ring
690
        if self.dp_degree > 1:
691
            self._collective_helper._init_communicator(
692 693 694 695 696 697 698
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False)
699

700 701
        startup_block._sync_with_cpp()

702
    def _build_shard(self, params_grads, shard_rank, shard_size):
703 704
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
705
        self._shard.setup(params_grads, shard_rank, shard_size)
706 707 708 709 710 711

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
712 713 714
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
715 716
            self._collective_helper._wait(current_endpoint, endpoints)

717 718 719 720 721 722 723 724
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

725 726 727 728 729
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
730 731

        var2broadcast_time = dict()
732 733 734 735 736
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
                                input_name = input_name[:input_name.find(
                                    ".cast_fp16@GRAD")]

                        if input_name in self._backward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
                            segment = self.collect_segment(segment, op_idx,
                                                           block)
                            self._forward_remain_anchors.remove(output_name)
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
                                                                      broadcast_var_base_name.
                                                                      find(
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

798 799 800 801 802 803 804
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            assert (reduced_grad not in
                                    self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
821 822 823 824 825 826 827 828 829 830 831

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
832 833 834 835 836 837 838 839 840 841 842 843 844

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
            for varname in sorted(
                    var2broadcast_time, key=var2broadcast_time.get,
                    reverse=True):
845
                logger.info("Sharding broadcast: [{}] times [{}]".format(
846 847
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
848 849
                logger.info("segment [{}] :".format(idx_))
                logger.info("start op: [{}]  [{}]".format(block.ops[
850 851 852
                    self._segments[idx_]._start_idx].desc.type(), block.ops[
                        self._segments[idx_]._start_idx].desc.input_arg_names(
                        )))
853
                logger.info("end   op: [{}]  [{}]".format(block.ops[
854 855
                    self._segments[idx_]._end_idx].desc.type(), block.ops[
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
856 857
        return

858
    def _prune_main_program(self, block, shard, rings):
859 860 861
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
862 863 864 865 866 867

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
868 869
        """
        weightdecay_helper = WeightDecayHelper()
870
        weightdecay_helper.prune_weight_decay(block, shard)
871 872

        # FIXME(wangxi): mp should prune duplicated param_grads
873 874 875
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
876
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
877

878
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
879
        gradientclip_helper = GradientClipHelper(None)
880
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
881 882 883 884 885 886

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
887 888 889
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
            if op.type == "c_allreduce_sum" and \
                    op.attr('use_model_parallel') is False:
890 891 892 893
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

894
        # prune optimizer state and param
895 896
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
897 898
            if shard.is_opti_var(var_name) and \
              not shard.has_opt_var(var_name):
899 900 901 902 903 904 905 906 907 908
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
909 910 911 912 913 914 915
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
947 948
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
949
                if program_deps.should_remove_op(idx):
950 951 952
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
                    reserved_vars = self._params if self._optimizer_sharding else None
                    program_deps.remove_op(idx, reserved_vars)
953

954 955 956 957 958 959 960 961 962 963
        # NOTE (JZ-LIANG) revise and unify logic here
        # sharding support fp16_allreduce logic            
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
964 965 966 967 968
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
969 970
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
971 972 973

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
974 975 976
        """
        if len(self._segments) < 1:
            return
977
        # sharding
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

994
        if self._segments[-1]._allreduce_vars:
995 996
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
997 998 999
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1000 1001
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
1002 1003 1004 1005 1006 1007
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1008
            # gradient merge 
1009
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1010 1011 1012 1013 1014 1015
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

1016
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
1017
                                 self.sharding_ring_id,
1018
                                 self._segments[-1]._allreduce_vars)
1019
            # allreduce --> reduce 
1020 1021 1022 1023 1024 1025 1026 1027
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
1065 1066
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1067 1068 1069
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
1087
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1088 1089 1090 1091 1092
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1109
            # gradient merge
1110
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1111 1112 1113 1114 1115
                self.create_persistable_gradients_and_insert_merge_ops(
                    block,
                    self._startup_program.global_block(), segment._start_idx,
                    shard_allredue_vars, self._shard)

1116 1117
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1118

1119
            # step6: add all_reduce ops
1120
            # dp
1121 1122 1123
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1124 1125 1126 1127 1128 1129
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1130 1131 1132
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
1133
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1134 1135 1136
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
1137
            # allreduce --> reduce 
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
            # TODO temp change
            if len(allreduce_vars) > 0:
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False)
1148 1149 1150 1151

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1152 1153 1154
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1155
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1156
                                 self.sharding_ring_id,
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1183
    def _prune_startup_program(self, block, shard):
1184 1185
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1186 1187 1188
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1189 1190 1191 1192 1193 1194
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1195 1196 1197
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1198 1199 1200
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1201

1202
    def _build_groups(self):
1203 1204
        """
        pre-assign ring ids
1205 1206 1207 1208
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1209 1210
            pp: 4
            pp-pair: >= 20
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        if one parallelism is not enable: -1
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp        
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding)
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1238
            ]
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

        # sharding 
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
            # sharding + ...    
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1280 1281
        # pp
        if self.pp_degree > 1:
1282 1283 1284
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
                self.pp_group_endpoints.append(self.global_endpoints[
                    pp_first_stage_idx + pp_stage_offset * i])
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1301 1302
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1303 1304 1305 1306
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1307 1308 1309 1310 1311 1312 1313
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
        # sharding-hybrid-dp as one senario of outter-pure-dp 
        assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
            self.mp_degree, self.sharding_degree, self.pp_degree,
            self.dp_degree, self.global_word_size)
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        if self.dp_degree > 1:
            self.dp_ring_id = 2
            self.dp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree * self.pp_degree)
            dp_first_rank_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree * self.pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree * self.pp_degree)
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
                self.dp_group_endpoints.append(self.global_endpoints[
                    dp_first_rank_idx + dp_offset * i])
            assert self.current_endpoint in self.dp_group_endpoints
1327
            logger.info("Hybrid DP mode turn on !")
1328 1329 1330
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1331
            self.dp_group_endpoints = []
1332

1333
        # global group
1334 1335
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1336
        self.global_ring_id = 3
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1355
            self.sharding_group_endpoints))
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1369
            self.dp_group_endpoints))
1370 1371
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1372 1373

        return
1374

W
WangXi 已提交
1375
    def _initialization_broadcast(self):
1376 1377 1378 1379
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
W
WangXi 已提交
1380 1381 1382 1383 1384
        if not self.hybrid_dp:
            return

        startup_block = self._startup_program.global_block()

1385
        params = []
1386
        for param in startup_block.iter_parameters():
1387
            params.append(param)
1388
            startup_block.append_op(
1389 1390 1391 1392 1393 1394 1395 1396
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
1397
        startup_block.append_op(
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})

    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
                inputs={'X': grad_name,
                        'Y': gradient_merge_var},
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                })

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

        cond_var = layers.create_global_var(
            name="gradient_merge_cond",
            shape=[1],
            value=bool(0),
            dtype='bool',
            persistable=False,
            force_cpu=True)

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1),
                       OP_ROLE_KEY: OpRole.Optimize})

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var,
                        'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False
                })

            # cond_var = (step_var == 0)
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var,
                        'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize})
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
            amp 
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

        # allreduce grad@gradientmerge  
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False)
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize
                })

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
1625
    def _sharding_gradient_merge(self):
1626 1627 1628 1629 1630 1631
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
W
WangXi 已提交
1632 1633 1634 1635
        if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
            return

        main_block = self._main_program.global_block()
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
            outputs={'Out': [],
                     'Scope': [step_scope]},
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })