conv_fusion_op.cc 12.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17

Q
qingqing01 已提交
18
#include "paddle/fluid/operators/conv_op.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
20
#include "paddle/phi/core/ddim.h"
Q
qingqing01 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

// This fused conv follows the equation:
//   y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
//   here, y is Output,
//         x is Input,
//         z is ResidualData,
//         bias is Bias
T
tianshuo78520a 已提交
31
// When `split_channels` is set, y will be split into multiple outputs,
Q
qingqing01 已提交
32
// each output has split_channels[i] number of channels.
Q
qingqing01 已提交
33 34 35 36 37 38 39 40
class Conv2DFusionOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<std::string>(
        "activation",
        "The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
        "'relux' , 'tanh', 'band_pass'")
        .SetDefault("relu");
Q
qingqing01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    AddAttr<std::vector<int>>(
        "split_channels",
        "When `split_channels` are set, there will be multiple outputs, the "
        "output size is equal to the number of `split_channels`.")
        .SetDefault({});
    AddOutput("Outputs",
              "This Outputs is used when setting `split_channels`."
              "Usually used to fuse conv with same input and same filter size, "
              "padding, stride, dilation size.")
        .AsDuplicable()
        .AsDispensable();
    AddInput("AlgoCache",
             "The cache of convolution algorithm, a RAW type variable.")
        .AsDispensable();
    AddAttr<int>(
        "search_times",
        "The number of exhaustive search times for convolution algorithm.")
        .SetDefault(-1);
59 60 61 62
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);
Q
qingqing01 已提交
63 64
  }
};
Q
qingqing01 已提交
65

Z
Zeng Jinle 已提交
66
class Conv2DFusionOp : public operators::ConvOp {
Q
qingqing01 已提交
67
 public:
Z
Zeng Jinle 已提交
68 69 70 71
  using operators::ConvOp::ConvOp;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
72 73
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv2DFusion");
    OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "Conv2DFusion");
74

75 76
    // In some case, attribute data_format is "AnyLayout".
    std::string data_format = ctx->Attrs().Get<std::string>("data_format");
77 78 79 80
    // MKL-DNN Kernels are using NCHW order of dims description
    // so we ignore data_format consideration for MKL-DNN kernel
    const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
                              (data_format == "NHWC" || data_format == "NDHWC");
81 82
    std::vector<int64_t> output_shape =
        ComputeOutputShape(ctx, data_format, channel_last);
83
    ctx->SetOutputDim("Output", phi::make_ddim(output_shape));
84
    ctx->ShareLoD("Input", "Output");
85

86
    std::vector<int> split_channels =
Q
qingqing01 已提交
87
        ctx->Attrs().Get<std::vector<int>>("split_channels");
88
    if (split_channels.size()) {
89 90
      OP_INOUT_CHECK(
          ctx->HasOutputs("Outputs"), "Output", "Outputs", "Conv2DFusion");
91
      PADDLE_ENFORCE_EQ(
92 93
          ctx->Outputs("Outputs").size(),
          split_channels.size(),
94 95 96 97 98
          platform::errors::InvalidArgument(
              "The number of Output(Outputs) of operator 'Conv2DFusion' is "
              "expected to be equal to the length of Attr(split_channels). But "
              "reiceved: the number of Output(Outputs) = %u; the length of "
              "Attr(split_channels) = %u, the content = [%s].",
99 100
              ctx->Outputs("Outputs").size(),
              split_channels.size(),
101
              phi::make_ddim(split_channels)));
102 103 104 105 106

      int split_channels_sum = 0;
      std::vector<framework::DDim> output_shapes(split_channels.size());
      for (size_t i = 0; i < split_channels.size(); ++i) {
        split_channels_sum += split_channels[i];
107 108 109 110 111 112 113 114 115 116 117
        if (channel_last) {
          output_shapes[i] = phi::make_ddim({output_shape[0],
                                             output_shape[1],
                                             output_shape[2],
                                             split_channels[i]});
        } else {
          output_shapes[i] = phi::make_ddim({output_shape[0],
                                             split_channels[i],
                                             output_shape[2],
                                             output_shape[3]});
        }
Q
qingqing01 已提交
118
      }
119 120 121
      int output_channels = output_shape[1];
      // for NHWC
      if (channel_last) output_channels = output_shape[3];
122
      PADDLE_ENFORCE_EQ(
123
          split_channels_sum,
124
          output_channels,
125
          platform::errors::InvalidArgument(
126 127
              "The sum of Attr(split_channels) is expected to be equal to "
              "the "
128
              "total output channels. But received: the sum of "
129
              "Attr(split_channels) = %d, the total output channels = %d.",
130
              split_channels_sum,
131
              output_channels));
132
      ctx->SetOutputsDim("Outputs", output_shapes);
Q
qingqing01 已提交
133 134
    }
  }
H
hong 已提交
135

136 137 138
  std::vector<int64_t> ComputeOutputShape(framework::InferShapeContext* ctx,
                                          const std::string& data_format,
                                          bool channel_last) const {
H
hong 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::string padding_algorithm =
        ctx->Attrs().Get<std::string>("padding_algorithm");
    int groups = ctx->Attrs().Get<int>("groups");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int dilation_size = dilations.size();
    for (int i = 0; i < dilation_size; ++i) {
      PADDLE_ENFORCE_GT(
155 156
          dilations[i],
          0,
H
hong 已提交
157 158 159 160 161 162 163
          platform::errors::InvalidArgument(
              "The dilation of Op(Conv) should be larget than 0, but received "
              "dilation is %d.",
              dilations[i]));
    }

    PADDLE_ENFORCE_EQ(
164 165
        in_dims.size() == 4 || in_dims.size() == 5,
        true,
H
hong 已提交
166 167 168
        platform::errors::InvalidArgument(
            "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
            "received: input's dimension is %u, input's shape is [%s].",
169 170
            in_dims.size(),
            in_dims));
H
hong 已提交
171 172

    PADDLE_ENFORCE_EQ(
173 174
        in_dims.size(),
        filter_dims.size(),
H
hong 已提交
175 176 177 178 179 180
        platform::errors::InvalidArgument(
            "The input's dimension and filter's dimension of "
            "Op(Conv) should be equal. But received: the input's shape is "
            "[%s], "
            "the input's dimension is %d; the filter's shape is [%s],  "
            "the filter's dimension is %d.",
181 182 183 184
            in_dims,
            in_dims.size(),
            filter_dims,
            filter_dims.size()));
H
hong 已提交
185 186 187 188

    int stride_size = strides.size();
    for (int i = 0; i < stride_size; ++i) {
      PADDLE_ENFORCE_GT(
189 190
          strides[i],
          0,
H
hong 已提交
191 192 193 194 195 196 197
          platform::errors::InvalidArgument(
              "The stride of Op(Conv) should be larget than 0, but received "
              "stride is %d.",
              strides[i]));
    }

    PADDLE_ENFORCE_EQ(
198 199
        in_dims.size(),
        strides.size() + 2U,
H
hong 已提交
200 201 202 203 204 205
        platform::errors::InvalidArgument(
            "The difference of input's dimension and Attr(strides)'s "
            "length must be euqal to 2 for Op(Conv). "
            "But received: input's dimension is %d, input's shape is [%s]; "
            "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
            "difference of input's dimention and Attr(strides)'s length = %u.",
206 207 208 209
            in_dims.size(),
            in_dims,
            strides.size(),
            phi::make_ddim(strides),
210
            in_dims.size() - stride_size));
H
hong 已提交
211 212 213 214 215

    const auto input_channels =
        channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];

    PADDLE_ENFORCE_EQ(
216
        input_channels,
217 218
        (channel_last ? filter_dims[filter_dims.size() - 1] : filter_dims[1]) *
            groups,
H
hong 已提交
219 220 221 222 223 224 225
        platform::errors::InvalidArgument(
            "The number of input's channels should be equal to filter's "
            "channels "
            "* groups for Op(Conv). But received: the input's channels is %d, "
            "the input's shape is [%s]; the filter's channels is %d, the "
            "filter's shape is [%s]; the groups is %d, the data_format is %s. "
            "The error may come from wrong data_format setting.",
226 227
            input_channels,
            in_dims,
228
            channel_last ? filter_dims[filter_dims.size() - 1] : filter_dims[1],
229 230
            filter_dims,
            groups,
H
hong 已提交
231 232
            data_format));
    PADDLE_ENFORCE_EQ(
233 234
        filter_dims[0] % groups,
        0,
H
hong 已提交
235 236 237 238 239
        platform::errors::InvalidArgument(
            "The number of output's channels (filter's first dimension) of "
            "Op(Conv) should be divided by groups. But received: "
            "the output channels is %d, the filter's shape is [%s], "
            "the groups is %d.",
240 241 242
            filter_dims[0],
            filter_dims,
            groups));
H
hong 已提交
243 244 245

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_GT(
246 247
          filter_dims[0],
          0,
H
hong 已提交
248 249 250 251 252 253 254 255 256 257 258
          platform::errors::InvalidArgument(
              "the size of filter at axis 0 should be greater than 0"));
    }

    framework::DDim in_data_dims;
    if (channel_last) {
      in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
    } else {
      in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
    }

259 260 261 262 263 264 265
    framework::DDim filter_data_dims;
    if (channel_last) {
      filter_data_dims =
          phi::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    } else {
      filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size());
    }
H
hong 已提交
266 267

    std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
268 269
    UpdatePaddingAndDilation(
        &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
H
hong 已提交
270 271 272 273 274 275 276 277 278 279

    std::vector<int64_t> output_shape({in_dims[0]});
    if (!channel_last) {
      output_shape.push_back(filter_dims[0]);
    }
    for (int i = 0; i < in_data_dims.size(); ++i) {
      if ((!ctx->IsRuntime()) &&
          (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
280 281 282 283 284 285
        output_shape.push_back(ConvOutputSize(in_data_dims[i],
                                              filter_data_dims[i],
                                              dilations[i],
                                              paddings[2 * i],
                                              paddings[2 * i + 1],
                                              strides[i]));
H
hong 已提交
286 287 288 289 290 291 292 293
      }
    }
    if (channel_last) {
      output_shape.push_back(filter_dims[0]);
    }

    return output_shape;
  }
Q
qingqing01 已提交
294 295
};

Q
qingqing01 已提交
296 297 298 299 300 301
// TODO(qingqing): add gradient operator for conv2d_fusion

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
302
REGISTER_OPERATOR(
303 304 305
    conv2d_fusion,
    ops::Conv2DFusionOp,
    ops::Conv2DFusionOpMaker,
Z
Zeng Jinle 已提交
306
    ops::ConvOpInferVarType,
H
hong 已提交
307 308
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
309 310 311 312 313 314 315 316 317 318

// This op is used by cutlass, conv2d_fusion_cutlass is a intermediate op
// produced by conv2d_fusion_layout_transfer_pass.
REGISTER_OPERATOR(
    conv2d_fusion_cutlass,
    ops::Conv2DFusionOp,
    ops::Conv2DFusionOpMaker,
    ops::ConvOpInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);