batch_norm_mkldnn_op.cc 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

22 23 24 25 26 27
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
28 29
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
30
using platform::to_void_cast;
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
  Op batch_norm_op{args...};

  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(batch_norm_op);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
69
    const bool fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

87 88 89 90 91 92 93 94 95 96 97 98
    PADDLE_ENFORCE(x->layout() == DataLayout::kMKLDNN &&
                       x->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input x tensor");

    const T *x_data = x->data<T>();
    const T *mean_data = mean->data<T>();
    const T *variance_data = variance->data<T>();
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
    T *mean_out_data = mean_out->mutable_data<T>(ctx.GetPlace());
    T *variance_out_data = variance_out->mutable_data<T>(ctx.GetPlace());
    T *batch_mean_data = nullptr;
    T *batch_variance_data = nullptr;
99 100

    if (!is_test) {
101 102
      batch_mean_data = batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance_data = batch_variance->mutable_data<T>(ctx.GetPlace());
103 104 105 106 107
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

108 109 110 111
    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");
    const unsigned int ic = scale_tz[0];
112 113 114

    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;
115
    if (fuse_with_relu) flags |= mkldnn::fuse_bn_relu;
116

117
    // create mkldnn memory from input x tensor
118 119
    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
120 121 122 123

    auto src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
        to_void_cast(x_data));
124 125

    // create primitive descriptor for batch norm forward
126
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
127 128 129 130 131 132
    auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
        propagation, src_memory.get_primitive_desc().desc(), epsilon, flags};
    std::shared_ptr<batch_norm_fwd::primitive_desc> batch_norm_fwd_pd =
        std::shared_ptr<batch_norm_fwd::primitive_desc>(
            new batch_norm_fwd::primitive_desc(batch_norm_fwd_desc,
                                               mkldnn_engine));
133

134 135 136 137
    // Save the pd to be used in backward pass
    const std::string key = ctx.op().Output("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    dev_ctx.SetBlob(key_batch_norm_fwd_pd, batch_norm_fwd_pd);
138 139 140 141 142 143 144 145 146

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

147 148 149
    // crate mkldnn memory for weights(scale/shift)
    auto scaleshift_memory = memory(batch_norm_fwd_pd->weights_primitive_desc(),
                                    scaleshift_data.data());
150

151 152
    // create mkldnn memory for output y tensor
    auto dst_memory = memory(batch_norm_fwd_pd->dst_primitive_desc(), y_data);
153

154 155 156 157
    if (is_test) {
      // create mkldnn memory for stats (as input)
      auto mean_memory = memory(batch_norm_fwd_pd->mean_primitive_desc(),
                                to_void_cast(mean_data));
158
      auto variance_memory =
159 160
          memory(batch_norm_fwd_pd->variance_primitive_desc(),
                 to_void_cast(variance_data));
161 162

      run_batch_norm_op<typename bn_fwd_types::op_type>(
163 164
          *batch_norm_fwd_pd, src_memory,
          (const mkldnn::primitive::at &)mean_memory,
165
          (const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
166
          dst_memory);
167
    } else {
168
      // create mkldnn memory for stats (as output)
169
      auto mean_memory =
170 171 172
          memory(batch_norm_fwd_pd->mean_primitive_desc(), batch_mean_data);
      auto variance_memory = memory(
          batch_norm_fwd_pd->variance_primitive_desc(), batch_variance_data);
173

174 175
      run_batch_norm_op<bn_fwd_types::op_type>(*batch_norm_fwd_pd, src_memory,
                                               scaleshift_memory, dst_memory,
176 177 178 179
                                               mean_memory, variance_memory);
    }

    if (!is_test) {
180 181 182 183 184 185 186 187 188
      // mkldnn only compute stats for current batch
      // so we need compute momentum stats via Eigen lib
      EigenVectorArrayMap<T> batch_mean_e(batch_mean_data, ic);
      EigenVectorArrayMap<T> batch_variance_e(batch_variance_data, ic);
      ConstEigenVectorArrayMap<T> mean_e(mean_data, ic);
      ConstEigenVectorArrayMap<T> variance_e{variance_data, ic};

      EigenVectorArrayMap<T> running_mean_e(mean_out_data, ic);
      EigenVectorArrayMap<T> running_variance_e(variance_out_data, ic);
189 190

      auto one_minus_momentum = 1. - momentum;
191 192 193
      running_mean_e = mean_e * momentum + batch_mean_e * one_minus_momentum;
      running_variance_e =
          variance_e * momentum + batch_variance_e * one_minus_momentum;
194
    }
195 196 197 198

    y->set_layout(DataLayout::kMKLDNN);
    y->set_format(
        (memory::format)dst_memory.get_primitive_desc().desc().data.format);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    PADDLE_ENFORCE(diff_y->layout() == DataLayout::kMKLDNN &&
                       diff_y->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input diff_y tensor");

    const T *x_data = x->data<T>();
    const T *diff_y_data = diff_y->data<T>();
    const T *batch_mean_data = batch_mean->data<T>();
    const T *batch_variance_data = batch_variance->data<T>();
    const T *scale_data = scale->data<T>();
    const T *shift_data = shift->data<T>();
    T *diff_x_data = diff_x->mutable_data<T>(ctx.GetPlace());
    T *diff_scale_data = diff_scale->mutable_data<T>(ctx.GetPlace());
    T *diff_shift_data = diff_shift->mutable_data<T>(ctx.GetPlace());

    auto src_tz = paddle::framework::vectorize2int(x->dims());
    auto diff_src_tz = src_tz;
    auto dst_tz = src_tz;
    auto diff_dst_tz = dst_tz;
    auto scale_tz = paddle::framework::vectorize2int(scale->dims());
    PADDLE_ENFORCE(scale_tz.size() == 1, "Dims of scale tensor is NOT 1");

    const unsigned int ic = scale_tz[0];

    // Retrieve bn_fwd_pd from device context
    const std::string key = ctx.op().Input("SavedMean");
    const std::string key_batch_norm_fwd_pd = key + "@bn_fwd_pd";
    auto batch_norm_fwd_pd =
        std::static_pointer_cast<batch_norm_fwd::primitive_desc>(
            dev_ctx.GetBlob(key_batch_norm_fwd_pd));
    PADDLE_ENFORCE(batch_norm_fwd_pd != nullptr,
                   "Fail to find batch_norm_fwd_pd in device context");
253

254
    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
255

256
    // create mkldnn memory from input diff_y tensor
257

258 259 260
    mkldnn::memory::format dst_format =
        platform::MKLDNNFormatForSize(src_tz.size(), diff_y->format());

261 262 263
    auto user_diff_dst_memory = memory(
        {{{diff_dst_tz}, memory::data_type::f32, dst_format}, mkldnn_engine},
        to_void_cast(diff_y_data));
264

265
    // create mkldnn memory from input x tensor
266 267
    mkldnn::memory::format input_format =
        platform::MKLDNNFormatForSize(src_tz.size(), x->format());
268 269 270 271

    auto src_memory = memory(
        {{{src_tz}, memory::data_type::f32, input_format}, mkldnn_engine},
        to_void_cast(x_data));
272

273 274 275
    // for diff_dst, try to use same format as dst in forward pass
    auto diff_dst_pd = batch_norm_fwd_pd.get()->dst_primitive_desc();
    auto diff_dst_md = diff_dst_pd.desc();
276

277 278
    // create primitive descriptor for batch norm backward
    unsigned flags = mkldnn::use_scale_shift;
279
    auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
280 281
        mkldnn::prop_kind::backward, diff_dst_md,
        src_memory.get_primitive_desc().desc(), epsilon, flags};
282
    auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
283 284 285 286 287 288 289 290 291 292 293
        batch_norm_bwd_desc, mkldnn_engine, *batch_norm_fwd_pd};

    // reorder user_diff_dst if it's not in preferred format
    auto diff_dst_memory = user_diff_dst_memory;
    primitive reorder_diff_dst;
    bool is_diff_dst_reordered = false;
    if (diff_dst_pd != user_diff_dst_memory.get_primitive_desc()) {
      diff_dst_memory = memory(diff_dst_pd);
      reorder_diff_dst = reorder(user_diff_dst_memory, diff_dst_memory);
      is_diff_dst_reordered = true;
    }
294

295 296 297 298 299
    // create mkldnn memory for input tensors (src/mean/variance)
    auto mean_memory = memory(batch_norm_bwd_pd.mean_primitive_desc(),
                              to_void_cast(batch_mean_data));
    auto variance_memory = memory(batch_norm_bwd_pd.variance_primitive_desc(),
                                  to_void_cast(batch_variance_data));
300

301
    // MKLDNN requires a single piece of memory for scale and shift/bias data
302 303 304 305
    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
306 307
    copy_to_weights(scale_data, scale_data + ic, shift_data, shift_data + ic,
                    &scaleshift_data);
308

309 310 311
    // create mkldnn memory for input tensors (scale/shift)
    auto scaleshift_memory = memory(batch_norm_bwd_pd.weights_primitive_desc(),
                                    scaleshift_data.data());
312

313
    // create mkldnn memory for output diff weights (combined scale/shift)
314 315 316
    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
    auto diff_scaleshift_memory =
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        memory(batch_norm_bwd_pd.diff_weights_primitive_desc(),
               diff_scaleshift_data.data());

    // here assume diff_src is in the same format of src
    auto diff_src_memory = memory(src_memory.get_primitive_desc(), diff_x_data);

    // finally create batch_norm backward primitive
    auto batch_norm_bwd_prim =
        batch_norm_bwd(batch_norm_bwd_pd, src_memory, mean_memory,
                       variance_memory, diff_dst_memory, scaleshift_memory,
                       diff_src_memory, diff_scaleshift_memory);

    // execute optional reorder and batch_norm backward primitive
    std::vector<primitive> pipeline;
    if (is_diff_dst_reordered) pipeline.push_back(reorder_diff_dst);
    pipeline.push_back(batch_norm_bwd_prim);
    stream(stream::kind::eager).submit(pipeline).wait();

    // copy back diff sacle/shift to output tensors (diff scale/shift)
    diff_scaleshift_data.resize(scaleshift_size);
337
    auto it = std::begin(diff_scaleshift_data);
338
    std::copy(it, std::next(it, ic), diff_scale_data);
339
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
340 341 342 343 344 345 346
              diff_shift_data);

    // set layout/format of output tensors
    diff_x->set_layout(DataLayout::kMKLDNN);
    diff_x->set_format((memory::format)diff_src_memory.get_primitive_desc()
                           .desc()
                           .data.format);
347 348 349 350 351 352
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
353
REGISTER_OP_KERNEL(batch_norm, MKLDNN, ::paddle::platform::CPUPlace,
354
                   ops::BatchNormMKLDNNOpKernel<float>);
355
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, ::paddle::platform::CPUPlace,
356
                   ops::BatchNormMKLDNNGradOpKernel<float>);