maxouting.cu 6.5 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/maxouting.h"
16
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
17
#include "paddle/phi/backends/gpu/gpu_context.h"
W
wanghaox 已提交
18 19 20 21 22

namespace paddle {
namespace operators {
namespace math {

W
wanghaox 已提交
23
template <typename T>
W
wanghaox 已提交
24
__global__ void KernelMaxOut(const int nthreads, const T* input_data,
25
                             const int channels, const int input_height,
26 27
                             const int input_width, const int groups,
                             const int axis, T* output_data) {
W
wanghaox 已提交
28 29
  const int size = input_height * input_width * channels / groups;
  const int feat_len = input_height * input_width;
W
wanghaox 已提交
30 31 32 33 34
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int batch_idx = i / size;
    int batch_offset = i % size;
35 36 37 38 39 40 41 42 43 44 45 46
    int channel_idx, feat_idx, data_idx;
    if (axis == 1) {
      channel_idx = batch_offset / feat_len;
      feat_idx = batch_offset % feat_len;
      data_idx =
          (batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
    } else {
      channel_idx = batch_offset % channels;
      feat_idx = batch_offset / channels;
      data_idx =
          (batch_idx * size + feat_idx * channels + channel_idx) * groups;
    }
W
wanghaox 已提交
47
    T ele = static_cast<T>(-FLT_MAX);
W
wanghaox 已提交
48
    for (int g = 0; g < groups; ++g) {
49 50
      int idx_offset = (axis == 1 ? g * feat_len : g);
      T x = input_data[data_idx + idx_offset];
W
wanghaox 已提交
51
      ele = ele > x ? ele : x;
W
wanghaox 已提交
52
    }
W
wanghaox 已提交
53
    output_data[i] = ele;
W
wanghaox 已提交
54 55 56
  }
}
template <typename T>
57 58 59 60
__global__ void KernelMaxoutGrad(const int nthreads, const T* input_data,
                                 const T* output_data, const T* output_grad,
                                 T* input_grad, const int channels,
                                 const int input_height, const int input_width,
61
                                 const int groups, const int axis) {
62 63 64 65 66 67 68
  const int size = input_height * input_width * channels / groups;
  const int feat_len = input_height * input_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int batch_idx = i / size;
    int batch_offset = i % size;
69 70 71 72 73 74 75 76 77 78 79 80
    int channel_idx, feat_idx, data_idx;
    if (axis == 1) {
      channel_idx = batch_offset / feat_len;
      feat_idx = batch_offset % feat_len;
      data_idx =
          (batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
    } else {
      channel_idx = batch_offset % channels;
      feat_idx = batch_offset / channels;
      data_idx =
          (batch_idx * size + feat_idx * channels + channel_idx) * groups;
    }
81 82 83
    int max_index = -1;
    bool continue_match = true;
    for (int g = 0; g < groups && continue_match; ++g) {
84 85 86
      int idx_offset = (axis == 1 ? g * feat_len : g);
      if (input_data[data_idx + idx_offset] == output_data[i]) {
        max_index = data_idx + idx_offset;
87 88
        continue_match = false;
        break;
W
wanghaox 已提交
89 90
      }
    }
91 92 93 94
    if (max_index != -1) {
      input_grad[max_index] += output_grad[index];
    }
  }
W
wanghaox 已提交
95 96
}
/*
97
 * All tensors are in NCHW or NHWC format.
W
wanghaox 已提交
98
 */
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename DeviceContext, typename T>
void MaxOutFunctor<DeviceContext, T>::operator()(const DeviceContext& context,
                                                 const framework::Tensor& input,
                                                 framework::Tensor* output,
                                                 const int groups,
                                                 const int axis) {
  const int batch_size = input.dims()[0];
  const int input_channels = input.dims()[axis];
  const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]);
  const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]);
  const int output_channels = output->dims()[axis];

  const T* input_data = input.data<T>();
  T* output_data = output->mutable_data<T>(context.GetPlace());
  int nthreads = output->numel();
  int blocks = (nthreads + 1024 - 1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocks, 1);

  KernelMaxOut<T><<<grid, threads, 0, context.stream()>>>(
      nthreads, input_data, input_channels, input_height, input_width, groups,
      axis, output_data);
}

W
wanghaox 已提交
123
/*
124
 * All tensors are in NCHW or NHWC format.
W
wanghaox 已提交
125
 */
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <typename DeviceContext, typename T>
void MaxOutGradFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor& input,
    framework::Tensor* input_grad, const framework::Tensor& output,
    const framework::Tensor& output_grad, const int groups, const int axis) {
  const int batch_size = input.dims()[0];
  const int input_channels = input.dims()[axis];
  const int input_height = (axis == 1 ? input.dims()[2] : input.dims()[1]);
  const int input_width = (axis == 1 ? input.dims()[3] : input.dims()[2]);
  const int output_channels = output.dims()[axis];

  const T* input_data = input.data<T>();
  const T* output_data = output.data<T>();
  const T* output_grad_data = output_grad.data<T>();
  T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
  int nthreads = output.numel();
  int blocks = (nthreads + 1024 - 1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocks, 1);

  KernelMaxoutGrad<T><<<grid, threads, 0, context.stream()>>>(
      nthreads, input_data, output_data, output_grad_data, input_grad_data,
      input_channels, input_height, input_width, groups, axis);
}
W
wanghaox 已提交
150

Q
QI JUN 已提交
151 152
template class MaxOutGradFunctor<platform::CUDADeviceContext, float>;
template class MaxOutGradFunctor<platform::CUDADeviceContext, double>;
W
wanghaox 已提交
153

Q
QI JUN 已提交
154 155
template class MaxOutFunctor<platform::CUDADeviceContext, float>;
template class MaxOutFunctor<platform::CUDADeviceContext, double>;
W
wanghaox 已提交
156

157 158 159 160 161 162
template class MaxOutGradFunctor<phi::GPUContext, float>;
template class MaxOutGradFunctor<phi::GPUContext, double>;

template class MaxOutFunctor<phi::GPUContext, float>;
template class MaxOutFunctor<phi::GPUContext, double>;

W
wanghaox 已提交
163 164 165
}  // namespace math
}  // namespace operators
}  // namespace paddle