mobilenetv3.py 16.9 KB
Newer Older
N
Nyakku Shigure 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
from paddle.utils.download import get_weights_path_from_url
from functools import partial

from .utils import _make_divisible
from ..ops import ConvNormActivation

__all__ = []

model_urls = {
26 27 28 29 30 31 32 33
    "mobilenet_v3_small_x1.0": (
        "https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_small_x1.0.pdparams",
        "34fe0e7c1f8b00b2b056ad6788d0590c",
    ),
    "mobilenet_v3_large_x1.0": (
        "https://paddle-hapi.bj.bcebos.com/models/mobilenet_v3_large_x1.0.pdparams",
        "118db5792b4e183b925d8e8e334db3df",
    ),
N
Nyakku Shigure 已提交
34 35 36 37 38 39
}


class SqueezeExcitation(nn.Layer):
    """
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
40
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.
N
Nyakku Shigure 已提交
41 42 43 44 45 46 47 48 49
    This code is based on the torchvision code with modifications.
    You can also see at https://github.com/pytorch/vision/blob/main/torchvision/ops/misc.py#L127
    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., paddle.nn.Layer], optional): ``delta`` activation. Default: ``paddle.nn.ReLU``
        scale_activation (Callable[..., paddle.nn.Layer]): ``sigma`` activation. Default: ``paddle.nn.Sigmoid``
    """

50 51 52 53 54 55 56
    def __init__(
        self,
        input_channels,
        squeeze_channels,
        activation=nn.ReLU,
        scale_activation=nn.Sigmoid,
    ):
N
Nyakku Shigure 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        super().__init__()
        self.avgpool = nn.AdaptiveAvgPool2D(1)
        self.fc1 = nn.Conv2D(input_channels, squeeze_channels, 1)
        self.fc2 = nn.Conv2D(squeeze_channels, input_channels, 1)
        self.activation = activation()
        self.scale_activation = scale_activation()

    def _scale(self, input):
        scale = self.avgpool(input)
        scale = self.fc1(scale)
        scale = self.activation(scale)
        scale = self.fc2(scale)
        return self.scale_activation(scale)

    def forward(self, input):
        scale = self._scale(input)
        return scale * input


class InvertedResidualConfig:
77 78 79 80 81 82 83 84 85 86 87
    def __init__(
        self,
        in_channels,
        kernel,
        expanded_channels,
        out_channels,
        use_se,
        activation,
        stride,
        scale=1.0,
    ):
N
Nyakku Shigure 已提交
88 89
        self.in_channels = self.adjust_channels(in_channels, scale=scale)
        self.kernel = kernel
90 91 92
        self.expanded_channels = self.adjust_channels(
            expanded_channels, scale=scale
        )
N
Nyakku Shigure 已提交
93 94 95 96 97 98 99 100 101
        self.out_channels = self.adjust_channels(out_channels, scale=scale)
        self.use_se = use_se
        if activation is None:
            self.activation_layer = None
        elif activation == "relu":
            self.activation_layer = nn.ReLU
        elif activation == "hardswish":
            self.activation_layer = nn.Hardswish
        else:
102 103
            raise RuntimeError(
                "The activation function is not supported: {}".format(
104 105 106
                    activation
                )
            )
N
Nyakku Shigure 已提交
107 108 109 110 111 112 113 114
        self.stride = stride

    @staticmethod
    def adjust_channels(channels, scale=1.0):
        return _make_divisible(channels * scale, 8)


class InvertedResidual(nn.Layer):
115 116 117 118 119 120 121 122 123 124 125
    def __init__(
        self,
        in_channels,
        expanded_channels,
        out_channels,
        filter_size,
        stride,
        use_se,
        activation_layer,
        norm_layer,
    ):
N
Nyakku Shigure 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
        super().__init__()
        self.use_res_connect = stride == 1 and in_channels == out_channels
        self.use_se = use_se
        self.expand = in_channels != expanded_channels

        if self.expand:
            self.expand_conv = ConvNormActivation(
                in_channels=in_channels,
                out_channels=expanded_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                norm_layer=norm_layer,
139 140
                activation_layer=activation_layer,
            )
N
Nyakku Shigure 已提交
141 142 143 144 145 146 147 148 149

        self.bottleneck_conv = ConvNormActivation(
            in_channels=expanded_channels,
            out_channels=expanded_channels,
            kernel_size=filter_size,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            groups=expanded_channels,
            norm_layer=norm_layer,
150 151
            activation_layer=activation_layer,
        )
N
Nyakku Shigure 已提交
152 153

        if self.use_se:
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            self.mid_se = SqueezeExcitation(
                expanded_channels,
                _make_divisible(expanded_channels // 4),
                scale_activation=nn.Hardsigmoid,
            )

        self.linear_conv = ConvNormActivation(
            in_channels=expanded_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            norm_layer=norm_layer,
            activation_layer=None,
        )
N
Nyakku Shigure 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    def forward(self, x):
        identity = x
        if self.expand:
            x = self.expand_conv(x)
        x = self.bottleneck_conv(x)
        if self.use_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.use_res_connect:
            x = paddle.add(identity, x)
        return x


class MobileNetV3(nn.Layer):
    """MobileNetV3 model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        config (list[InvertedResidualConfig]): MobileNetV3 depthwise blocks config.
        last_channel (int): The number of channels on the penultimate layer.
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
    """

196 197 198
    def __init__(
        self, config, last_channel, scale=1.0, num_classes=1000, with_pool=True
    ):
N
Nyakku Shigure 已提交
199 200 201 202 203 204 205 206 207 208 209 210
        super().__init__()

        self.config = config
        self.scale = scale
        self.last_channel = last_channel
        self.num_classes = num_classes
        self.with_pool = with_pool
        self.firstconv_in_channels = config[0].in_channels
        self.lastconv_in_channels = config[-1].in_channels
        self.lastconv_out_channels = self.lastconv_in_channels * 6
        norm_layer = partial(nn.BatchNorm2D, epsilon=0.001, momentum=0.99)

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        self.conv = ConvNormActivation(
            in_channels=3,
            out_channels=self.firstconv_in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            groups=1,
            activation_layer=nn.Hardswish,
            norm_layer=norm_layer,
        )

        self.blocks = nn.Sequential(
            *[
                InvertedResidual(
                    in_channels=cfg.in_channels,
                    expanded_channels=cfg.expanded_channels,
                    out_channels=cfg.out_channels,
                    filter_size=cfg.kernel,
                    stride=cfg.stride,
                    use_se=cfg.use_se,
                    activation_layer=cfg.activation_layer,
                    norm_layer=norm_layer,
                )
                for cfg in self.config
            ]
        )
N
Nyakku Shigure 已提交
237 238 239 240 241 242 243 244 245

        self.lastconv = ConvNormActivation(
            in_channels=self.lastconv_in_channels,
            out_channels=self.lastconv_out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            groups=1,
            norm_layer=norm_layer,
246 247
            activation_layer=nn.Hardswish,
        )
N
Nyakku Shigure 已提交
248 249 250 251 252 253 254

        if with_pool:
            self.avgpool = nn.AdaptiveAvgPool2D(1)

        if num_classes > 0:
            self.classifier = nn.Sequential(
                nn.Linear(self.lastconv_out_channels, self.last_channel),
255 256 257 258
                nn.Hardswish(),
                nn.Dropout(p=0.2),
                nn.Linear(self.last_channel, num_classes),
            )
N
Nyakku Shigure 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    def forward(self, x):
        x = self.conv(x)
        x = self.blocks(x)
        x = self.lastconv(x)

        if self.with_pool:
            x = self.avgpool(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
            x = self.classifier(x)

        return x


class MobileNetV3Small(MobileNetV3):
    """MobileNetV3 Small architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
281
        num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
N
Nyakku Shigure 已提交
282 283 284
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.

285 286 287
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MobileNetV3 Small architecture model.

N
Nyakku Shigure 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300
    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import MobileNetV3Small

            # build model
            model = MobileNetV3Small(scale=1.0)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
301
            # [1, 1000]
N
Nyakku Shigure 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    """

    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        config = [
            InvertedResidualConfig(16, 3, 16, 16, True, "relu", 2, scale),
            InvertedResidualConfig(16, 3, 72, 24, False, "relu", 2, scale),
            InvertedResidualConfig(24, 3, 88, 24, False, "relu", 1, scale),
            InvertedResidualConfig(24, 5, 96, 40, True, "hardswish", 2, scale),
            InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale),
            InvertedResidualConfig(40, 5, 240, 40, True, "hardswish", 1, scale),
            InvertedResidualConfig(40, 5, 120, 48, True, "hardswish", 1, scale),
            InvertedResidualConfig(48, 5, 144, 48, True, "hardswish", 1, scale),
            InvertedResidualConfig(48, 5, 288, 96, True, "hardswish", 2, scale),
            InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale),
            InvertedResidualConfig(96, 5, 576, 96, True, "hardswish", 1, scale),
        ]
        last_channel = _make_divisible(1024 * scale, 8)
319 320 321 322 323 324 325
        super().__init__(
            config,
            last_channel=last_channel,
            scale=scale,
            with_pool=with_pool,
            num_classes=num_classes,
        )
N
Nyakku Shigure 已提交
326 327 328 329 330 331 332 333


class MobileNetV3Large(MobileNetV3):
    """MobileNetV3 Large architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
334
        num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer
N
Nyakku Shigure 已提交
335 336 337
                            will not be defined. Default: 1000.
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.

338 339 340
    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MobileNetV3 Large architecture model.

N
Nyakku Shigure 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import MobileNetV3Large

            # build model
            model = MobileNetV3Large(scale=1.0)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
354
            # [1, 1000]
N
Nyakku Shigure 已提交
355 356 357 358 359 360 361 362 363 364
    """

    def __init__(self, scale=1.0, num_classes=1000, with_pool=True):
        config = [
            InvertedResidualConfig(16, 3, 16, 16, False, "relu", 1, scale),
            InvertedResidualConfig(16, 3, 64, 24, False, "relu", 2, scale),
            InvertedResidualConfig(24, 3, 72, 24, False, "relu", 1, scale),
            InvertedResidualConfig(24, 5, 72, 40, True, "relu", 2, scale),
            InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale),
            InvertedResidualConfig(40, 5, 120, 40, True, "relu", 1, scale),
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
            InvertedResidualConfig(
                40, 3, 240, 80, False, "hardswish", 2, scale
            ),
            InvertedResidualConfig(
                80, 3, 200, 80, False, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                80, 3, 184, 80, False, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                80, 3, 184, 80, False, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                80, 3, 480, 112, True, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                112, 3, 672, 112, True, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                112, 5, 672, 160, True, "hardswish", 2, scale
            ),
            InvertedResidualConfig(
                160, 5, 960, 160, True, "hardswish", 1, scale
            ),
            InvertedResidualConfig(
                160, 5, 960, 160, True, "hardswish", 1, scale
            ),
N
Nyakku Shigure 已提交
392 393
        ]
        last_channel = _make_divisible(1280 * scale, 8)
394 395 396 397 398 399 400
        super().__init__(
            config,
            last_channel=last_channel,
            scale=scale,
            with_pool=with_pool,
            num_classes=num_classes,
        )
N
Nyakku Shigure 已提交
401 402 403 404 405 406 407 408 409 410 411 412


def _mobilenet_v3(arch, pretrained=False, scale=1.0, **kwargs):
    if arch == "mobilenet_v3_large":
        model = MobileNetV3Large(scale=scale, **kwargs)
    else:
        model = MobileNetV3Small(scale=scale, **kwargs)
    if pretrained:
        arch = "{}_x{}".format(arch, scale)
        assert (
            arch in model_urls
        ), "{} model do not have a pretrained model now, you should set pretrained=False".format(
413 414 415 416 417
            arch
        )
        weight_path = get_weights_path_from_url(
            model_urls[arch][0], model_urls[arch][1]
        )
N
Nyakku Shigure 已提交
418 419 420 421 422 423 424 425 426 427 428

        param = paddle.load(weight_path)
        model.set_dict(param)
    return model


def mobilenet_v3_small(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV3 Small architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
429 430
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
N
Nyakku Shigure 已提交
431
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
432 433 434 435
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Small <api_paddle_vision_MobileNetV3Small>`.

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MobileNetV3 Small architecture model.
N
Nyakku Shigure 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import mobilenet_v3_small

            # build model
            model = mobilenet_v3_small()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v3_small(pretrained=True)

            # build mobilenet v3 small model with scale=0.5
            model = mobilenet_v3_small(scale=0.5)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
456
            # [1, 1000]
N
Nyakku Shigure 已提交
457
    """
458 459 460
    model = _mobilenet_v3(
        "mobilenet_v3_small", scale=scale, pretrained=pretrained, **kwargs
    )
N
Nyakku Shigure 已提交
461 462 463 464 465 466 467 468
    return model


def mobilenet_v3_large(pretrained=False, scale=1.0, **kwargs):
    """MobileNetV3 Large architecture model from
    `"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>`_.

    Args:
469 470
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
N
Nyakku Shigure 已提交
471
        scale (float, optional): Scale of channels in each layer. Default: 1.0.
472 473 474 475
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`MobileNetV3Large <api_paddle_vision_MobileNetV3Large>`.

    Returns:
        :ref:`api_paddle_nn_Layer`. An instance of MobileNetV3 Large architecture model.
N
Nyakku Shigure 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import mobilenet_v3_large

            # build model
            model = mobilenet_v3_large()

            # build model and load imagenet pretrained weight
            # model = mobilenet_v3_large(pretrained=True)

            # build mobilenet v3 large model with scale=0.5
            model = mobilenet_v3_large(scale=0.5)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
496
            # [1, 1000]
N
Nyakku Shigure 已提交
497
    """
498 499 500
    model = _mobilenet_v3(
        "mobilenet_v3_large", scale=scale, pretrained=pretrained, **kwargs
    )
N
Nyakku Shigure 已提交
501
    return model