input.py 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...static import Variable
16
from ...fluid.layer_helper import LayerHelper
17
from ...fluid.data_feeder import check_variable_and_dtype
18
from paddle import _C_ops, _legacy_C_ops
J
Jiabin Yang 已提交
19
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode
20

21 22
__all__ = []

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

74
            import paddle
75
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
76
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
77
            # label.shape = [4]
Y
yukavio 已提交
78
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
79
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
80 81 82 83
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
84

85 86
    """

J
Jiabin Yang 已提交
87
    if in_dygraph_mode():
88
        return _C_ops.one_hot(x, num_classes)
89
    else:
J
Jiabin Yang 已提交
90
        if _in_legacy_dygraph():
91 92 93
            return _legacy_C_ops.one_hot_v2(
                x, 'depth', num_classes, 'allow_out_of_range', False
            )
94
        else:
95 96 97
            check_variable_and_dtype(
                x, 'input', ['int32', 'int64'], 'one_hot_v2'
            )
J
Jiabin Yang 已提交
98 99 100
            helper = LayerHelper("one_hot_v2", **locals())

            one_hot_out = helper.create_variable_for_type_inference(
101 102
                dtype='float32'
            )
J
Jiabin Yang 已提交
103 104 105 106 107 108 109 110
            if not isinstance(num_classes, Variable):
                # user attribute
                inputs = {'X': x}
                attrs = {'depth': num_classes, 'allow_out_of_range': False}
            else:
                num_classes.stop_gradient = True
                inputs = {'X': x, 'depth_tensor': num_classes}
                attrs = {'allow_out_of_range': False}
111 112 113 114 115 116 117
            helper.append_op(
                type="one_hot_v2",
                inputs=inputs,
                attrs=attrs,
                outputs={'Out': one_hot_out},
                stop_gradient=True,
            )
J
Jiabin Yang 已提交
118
            return one_hot_out
T
tangwei12 已提交
119 120 121


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
122
    r"""
123
    Used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
124 125 126

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
127

128 129 130
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
131 132

    .. code-block:: text
133

T
tangwei12 已提交
134
            x is a Tensor.
T
tangwei12 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
149
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
150 151 152 153 154 155

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
156
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
157 158
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
159
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
160
            In these cases, sparse must be False. Default: False.
161
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
162
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
163
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
164 165
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
166
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
167 168 169 170
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
171
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
172 173 174 175

    Examples:

        .. code-block:: python
176

T
tangwei12 已提交
177 178 179
            import paddle
            import paddle.nn as nn

180 181
            x0 = paddle.arange(3, 6).reshape((3, 1)).astype(paddle.int64)
            w0 = paddle.full(shape=(10, 3), fill_value=2).astype(paddle.float32)
T
tangwei12 已提交
182

T
tangwei12 已提交
183 184 185
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
186

T
tangwei12 已提交
187 188 189
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
190

T
tangwei12 已提交
191 192 193 194
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
195 196

    """
197 198 199 200 201 202 203
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (weight.shape[0] + padding_idx)
    )
204 205

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
206 207 208 209 210
        raise ValueError(
            "padding_idx must be within [-{}, {})".format(
                weight.shape[0], weight.shape[0]
            )
        )
211

Z
zyfncg 已提交
212
    if in_dygraph_mode():
213
        return _C_ops.embedding(x, weight, padding_idx, sparse)
Z
zyfncg 已提交
214
    elif _in_legacy_dygraph():
215 216 217 218 219 220 221 222 223 224 225 226
        return _legacy_C_ops.lookup_table_v2(
            weight,
            x,
            'is_sparse',
            sparse,
            'is_distributed',
            False,
            'remote_prefetch',
            False,
            'padding_idx',
            padding_idx,
        )
T
tangwei12 已提交
227 228
    else:
        helper = LayerHelper('embedding', **locals())
229
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
230

231 232 233 234 235 236
        check_variable_and_dtype(
            x,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'embedding',
        )
T
tangwei12 已提交
237 238 239 240 241

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
242

243 244 245 246 247 248 249 250 251 252 253
        helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': x, 'W': weight},
            outputs={'Out': tmp},
            attrs={
                'is_sparse': sparse,
                'is_distributed': is_distributed,
                'remote_prefetch': remote_prefetch,
                'padding_idx': padding_idx,
            },
        )
T
tangwei12 已提交
254
        return tmp