group_sharded.py 11.6 KB
Newer Older
B
Baibaifan 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
B
Baibaifan 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
B
Baibaifan 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
B
Baibaifan 已提交
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging

import paddle

from paddle.optimizer import Optimizer
R
Roc 已提交
21
from paddle.distributed.utils.log_utils import get_logger
B
Baibaifan 已提交
22 23 24
from paddle.fluid.framework import in_dygraph_mode

# Old version
25 26 27 28 29 30 31 32 33 34 35 36
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2 import (
    ShardingOptimizerStage2,
)
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import (
    ShardingStage2,
)
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3 import (
    ShardingStage3,
)
from paddle.distributed.fleet.meta_parallel.sharding.sharding_utils import (
    ShardingScaler,
)
B
Baibaifan 已提交
37

B
Baibaifan 已提交
38
# New version
39 40 41 42 43 44 45 46 47 48 49 50
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2 import (
    GroupShardedOptimizerStage2,
)
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage2 import (
    GroupShardedStage2,
)
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage3 import (
    GroupShardedStage3,
)
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_utils import (
    GroupShardedScaler,
)
B
Baibaifan 已提交
51

H
hong 已提交
52
logger_ = get_logger(logging.WARNING)
B
Baibaifan 已提交
53 54


55 56 57 58 59 60 61 62 63 64 65 66 67
def group_sharded_parallel(
    model,
    optimizer,
    level,
    scaler=None,
    group=None,
    offload=False,
    sync_buffers=False,
    buffer_max_size=2**23,
    segment_size=2**20,
    sync_comm=False,
    dp_group=None,
):
B
Baibaifan 已提交
68
    """
B
Baibaifan 已提交
69 70
    Use group_sharded_parallel can perform group shared configuration on the model, optimizer and GradScaler. Level has three string options, 'os', 'os_g' and 'p_g_os' corresponds to three different usage scenarios: optimizer state segmentation, optimizer state + gradient segmentation, and parameter + gradient + optimizer state segmentation.
    Usually, optimizer state + gradient segmentation is actually a re optimization of optimizer state segmentation, so optimizer state + gradient segmentation can be used to realize optimizer state segmentation.
B
Baibaifan 已提交
71 72 73 74 75

    Args:
        model (Layer): The layer to be wrapped with group_sharded_parallel.
        optimizer (Optimizer): The optimizer to be wrapped with group_sharded_parallel.
        level (str): The different level of the group sharded. Such as `os`, `os_g`, `p_g_os`.
B
Baibaifan 已提交
76 77 78 79 80 81 82
        scaler (GradScaler, optional): If AMP is used, you need to pass GradScaler. Defaults to None, indicating that GradScaler is not used.
        group (Group, optional): The group instance. Defaults to None, indicating that the default environment group is used.
        offload (bool, optional): Whether to use the offload function. Defaults to False, which means that the offload function is not used.
        sync_buffers (bool, optional): Whether to broadcast model buffers. It is generally used when there are registered model buffers. Defaults to False, indicating that model buffers are not used.
        buffer_max_size (int, optional): The max size of the buffer used to integrate gradient in `os_g`. The larger the size, the more GPU memory will be used. Defaults to 2**23, which means that the dimension of the buffer is 2**23.
        segment_size (int, optional): The smallest size of parameter to be sharded in `p_g_os`. Defaults to 2**20, indicating that the dimension of the minimum segmented parameter is 2**20.
        sync_comm (bool, optional): Whether to use synchronous communication, only in `p_g_os` used. Defaults to False, indicating that asynchronous communication is used.
83
        dp_group(Group, optional): dp communication group, only support to combine stage2 and dp hybrid communication now.
84

B
Baibaifan 已提交
85 86 87 88
    Returns:
        model: A wrapper for group sharded given model.
        optimizer: A wrapper for group sharded given optimizer.
        scaler: A wrapper for group sharded given scaler.
89

B
Baibaifan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
    """
120 121 122 123 124 125

    device = paddle.get_device().split(":")[0]
    assert device in [
        "gpu",
        "xpu",
    ], "group_sharded_parallel only support gpu and xpu now"
B
Baibaifan 已提交
126 127
    # check optition type
    assert isinstance(
128 129
        model, paddle.nn.Layer
    ), "The model must be the instance of paddle.nn.Layer."
B
Baibaifan 已提交
130 131 132
    assert isinstance(
        optimizer, Optimizer
    ), "The optimizer must be the instance of paddle.optimizer.Optimizer."
133 134 135 136 137
    assert level in [
        'os',
        'os_g',
        'p_g_os',
    ], "The level must be os, os_g or p_g_os."
B
Baibaifan 已提交
138 139 140 141

    def check_dtype(param):
        return param.dtype == paddle.float16

B
Baibaifan 已提交
142
    params_fp16 = list(filter(check_dtype, model.parameters()))
B
Baibaifan 已提交
143 144 145 146 147 148 149
    if scaler is None and len(params_fp16) > 0:
        raise ValueError("Please enter the correct scaler.")
    # convert model/optimizer/scaler
    if level in ['os', 'os_g']:
        logger_.info("*" * 30)
        logger_.info("Sharded level os uses sharded level os_g achieved now.")
        logger_.info("*" * 30)
B
Baibaifan 已提交
150 151 152 153 154
        if in_dygraph_mode():
            optimizer = GroupShardedOptimizerStage2(
                params=optimizer._parameter_list,
                optim=optimizer,
                group=group,
155
                offload=offload,
156
                dp_group=dp_group,
157
                device=device,
158 159 160 161 162 163 164 165
            )
            model = GroupShardedStage2(
                model,
                optimizer,
                group=group,
                sync_buffers=sync_buffers,
                buffer_max_size=buffer_max_size,
                dp_group=dp_group,
166
                device=device,
167
            )
B
Baibaifan 已提交
168
        else:
169 170 171 172 173
            optimizer = ShardingOptimizerStage2(
                params=model.parameters(),
                optim=optimizer,
                group=group,
                offload=offload,
174
                device=device,
175 176 177 178 179 180 181
            )
            model = ShardingStage2(
                model,
                optimizer,
                group=group,
                sync_buffers=sync_buffers,
                buffer_max_size=buffer_max_size,
182
                device=device,
183
            )
B
Baibaifan 已提交
184
    elif level == 'p_g_os':
B
Baibaifan 已提交
185
        if in_dygraph_mode():
186 187 188 189 190 191 192 193
            model = GroupShardedStage3(
                model,
                optimizer=optimizer,
                group=group,
                sync_buffers=sync_buffers,
                segment_size=segment_size,
                offload=offload,
                sync_comm=sync_comm,
194
                device=device,
195
            )
B
Baibaifan 已提交
196
        else:
197 198 199 200 201 202 203 204
            model = ShardingStage3(
                model,
                optimizer=optimizer,
                group=group,
                sync_buffers=sync_buffers,
                segment_size=segment_size,
                offload=offload,
                sync_comm=sync_comm,
205
                device=device,
206
            )
B
Baibaifan 已提交
207 208
    else:
        raise ValueError("Please enter the correct level.")
H
Haohongxiang 已提交
209
    if isinstance(scaler, paddle.amp.GradScaler):
B
Baibaifan 已提交
210 211 212 213
        if in_dygraph_mode():
            scaler = GroupShardedScaler(scaler)
        else:
            scaler = ShardingScaler(scaler)
B
Baibaifan 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
    logger_.info("*" * 30)
    logger_.info(
        "If there is a communication hang using group sharded, please check whether the communication operations of each process are unified."
    )
    logger_.info("*" * 30)

    return model, optimizer, scaler


def save_group_sharded_model(model, output, optimizer=None):
    """
    Group sharded encapsulated model and optimizer state saving module.

227
    Note:
B
Baibaifan 已提交
228 229
        If using save_group_sharded_model saves the model. When loading again, you need to set the model or optimizer state before using group_sharded_parallel.

B
Baibaifan 已提交
230 231 232
    Args:
        model (Layer): A wrapper for group sharded given model.
        output (str): Save directory.
B
Baibaifan 已提交
233
        optimizer (Optimizer, optional): Group sharded encapsulated optimizer. Defaults to None, indicating that the optimizer state is not saved.
234

B
Baibaifan 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()

            # save model and optimizer state_dict
B
Baibaifan 已提交
266
            save_group_sharded_model(model, optimizer, output=output_dir)
B
Baibaifan 已提交
267 268
    """
    logger_.info(
269 270
        "==========Begin to save group sharded model and optimizer=========="
    )
B
Baibaifan 已提交
271 272 273 274 275
    assert not os.path.isfile(
        output
    ), "Saving directory ({}) should be a directory, not a file".format(output)
    os.makedirs(output, exist_ok=True)
    output_model = os.path.join(output, "model.pdmodel")
B
Baibaifan 已提交
276
    if isinstance(model, (ShardingStage2, GroupShardedStage2)):
B
Baibaifan 已提交
277
        paddle.save(model._layer.state_dict(), output_model)
B
Baibaifan 已提交
278
    elif isinstance(model, (ShardingStage3, GroupShardedStage3)):
B
Baibaifan 已提交
279 280 281 282 283
        convert2cpu = True if model._offload else False
        model.get_all_parameters(convert2cpu=convert2cpu)
        paddle.save(model._layer.state_dict(), output_model)
    else:
        raise ValueError(
284 285
            "Please use the layer which is wrapped with group_sharded_parallel."
        )
B
Baibaifan 已提交
286 287 288 289 290 291 292 293

    if optimizer is not None:
        assert hasattr(
            optimizer, "_optim"
        ), "Please use the optimizer which is wrapped with group_sharded_parallel."
        output_opt = os.path.join(output, "model.pdopt")
        paddle.save(optimizer._optim.state_dict(), output_opt)
    logger_.info(
294 295
        "==========End to save group sharded model and optimizer=========="
    )