backward_mode.py 4.7 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import core
from paddle.fluid import framework
17
from paddle.fluid.backward import gradients_with_optimizer  # noqa: F401
18
import paddle
19

20
__all__ = []
21 22 23 24 25 26


@framework.dygraph_only
def backward(tensors, grad_tensors=None, retain_graph=False):
    """
    Compute the backward gradients of given tensors.
27

28 29 30 31
    Args:
        tensors(list of Tensors): the tensors which the gradient to be computed. The tensors can not contain the same tensor.

        grad_tensors(list of Tensors of None, optional): the init gradients of the `tensors`` .If not None, it must have the same length with ``tensors`` ,
32
            and if any of the elements is None, then the init gradient is the default value which is filled with 1.0.
33 34 35 36 37 38 39
            If None, all the gradients of the ``tensors`` is the default value which is filled with 1.0.
            Defaults to None.

        retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
            like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
            :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
            Defaults to False.
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    Returns:
        NoneType: None


    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32', stop_gradient=False)
            y = paddle.to_tensor([[3, 2], [3, 4]], dtype='float32')

            grad_tensor1 = paddle.to_tensor([[1,2], [2, 3]], dtype='float32')
            grad_tensor2 = paddle.to_tensor([[1,1], [1, 1]], dtype='float32')

            z1 = paddle.matmul(x, y)
            z2 = paddle.matmul(x, y)

            paddle.autograd.backward([z1, z2], [grad_tensor1, grad_tensor2], True)
            print(x.grad)
            #[[12. 18.]
            # [17. 25.]]

            x.clear_grad()

            paddle.autograd.backward([z1, z2], [grad_tensor1, None], True)
            print(x.grad)
            #[[12. 18.]
            # [17. 25.]]

            x.clear_grad()

            paddle.autograd.backward([z1, z2])
            print(x.grad)
            #[[10. 14.]
            # [10. 14.]]

    """

    def check_tensors(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} connot be empyt".format(name)
            for each_var in in_out_list:
85
                assert isinstance(
86 87
                    each_var, (paddle.Tensor, core.eager.Tensor)
                ), "Elements of {} must be paddle.Tensor".format(name)
88 89
            return in_out_list
        else:
90
            assert isinstance(
91 92
                in_out_list, (paddle.Tensor, core.eager.Tensor)
            ), "{} must be Tensor or list of Tensor".format(name)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            return [in_out_list]

    tensors = check_tensors(tensors, "tensors")

    assert len(tensors) == len(
        set(tensors)
    ), "The argument 'tensors' of paddle.autograd.backward contains duplicate paddle.Tensor object."

    if grad_tensors is not None:
        if not isinstance(grad_tensors, (list, tuple)):
            grad_tensors = [grad_tensors]

        for each_tensor in grad_tensors:
            if each_tensor is not None:
                assert isinstance(
108
                    each_tensor, (paddle.Tensor, core.eager.Tensor)
109 110
                ), "The argument 'grad_tensors' of paddle.autograd.backward is invalid, it can be 'None', 'paddle.Tensor' or 'list[None/paddle.Tensor]'."
    else:
J
Jiabin Yang 已提交
111
        if framework._in_eager_mode_:
112 113 114
            grad_tensors = []
        else:
            grad_tensors = [None] * len(tensors)
115 116 117

    if len(grad_tensors) > 0:
        assert len(tensors) == len(
118 119
            grad_tensors
        ), "The length of grad_tensors must be equal to tensors"
120 121 122

    assert isinstance(retain_graph, bool), "retain_graph must be True or False"

J
Jiabin Yang 已提交
123
    if framework._in_eager_mode_:
124 125
        core.eager.run_backward(tensors, grad_tensors, retain_graph)
    else:
126 127 128
        core.dygraph_run_backward(
            tensors, grad_tensors, retain_graph, framework._dygraph_tracer()
        )