crop_op.h 3.6 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
19
#include "paddle/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
20 21

namespace paddle {
22
namespace operators {  // Internal
W
wanghaoshuang 已提交
23 24 25 26

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
27 28 29 30 31 32 33 34
using framework::Tensor;

template <typename T>
class CropKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
W
wanghaoshuang 已提交
35
    const T* x_data = x->data<T>();
36
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
37 38
    auto x_stride = framework::stride(x->dims());
    auto out_stride = framework::stride(out->dims());
39 40
    auto offsets = context.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
W
wanghaoshuang 已提交
41
        x->dims().size(), offsets.size(),
42 43 44 45 46 47 48 49 50
        "Offsets size should be equal to dimension size of input tensor.");
    int64_t offset = 0;
    for (int i = 0; i < offsets.size(); ++i) {
      offset += (x_stride[i] * offsets[i]);
    }
    StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
                     out->dims(), out_stride, out_data);
  }
};
W
wanghaoshuang 已提交
51 52 53

template <typename Place, typename T, size_t D>
void CropGradFunction(const framework::ExecutionContext& context) {
54
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
55
  if (d_x != nullptr) {
56
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
57
    d_x->mutable_data<T>(context.GetPlace());
58
    auto offsets = context.Attr<std::vector<int>>("offsets");
59
    Eigen::array<std::pair<int, int>, D> paddings;
60
    for (int i = 0; i < D; ++i) {
61
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
62
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
63 64 65
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
66 67
    d_x_tensor.device(context.GetEigenDevice<Place>()) =
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
68 69 70 71 72 73 74
  }
}

template <typename Place, typename T>
class CropGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
75
    size_t rank =
76
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
77
    switch (rank) {
W
wanghaoshuang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
      case 1:
        CropGradFunction<Place, T, 1>(context);
        break;
      case 2:
        CropGradFunction<Place, T, 2>(context);
        break;
      case 3:
        CropGradFunction<Place, T, 3>(context);
        break;
      case 4:
        CropGradFunction<Place, T, 4>(context);
        break;
      case 5:
        CropGradFunction<Place, T, 5>(context);
        break;
      case 6:
        CropGradFunction<Place, T, 6>(context);
        break;
      default:
97 98
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
99 100 101 102 103 104
    }
  }
};

}  // namespace operators
}  // namespace paddle