test_elementwise_sub_op.py 16.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
19

C
chentianyu03 已提交
20
import paddle
21
import paddle.fluid as fluid
G
gongweibao 已提交
22 23


24 25 26 27 28 29 30 31 32 33
def sub_wrapper(shape=None):
    def inner_wrapper(x, y, axis=-1):
        if shape is None:
            return x - y
        else:
            return x - y.reshape(shape)

    return inner_wrapper


G
gongweibao 已提交
34 35 36
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
37
        self.python_api = sub_wrapper()
G
gongweibao 已提交
38
        self.inputs = {
39
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
40
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
G
gongweibao 已提交
41 42 43 44 45 46 47
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
48
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
49 50

    def test_check_grad_ingore_x(self):
51 52 53
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
G
gongweibao 已提交
54 55

    def test_check_grad_ingore_y(self):
56 57 58
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
G
gongweibao 已提交
59 60


61 62 63
class TestElementwiseSubOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
64
        self.python_api = sub_wrapper()
65 66 67 68 69 70 71 72 73 74
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
75
        self.python_api = sub_wrapper()
76 77 78 79 80 81 82 83 84 85
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
86
        self.python_api = sub_wrapper()
87 88 89 90 91 92 93
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


94 95 96
class TestBF16ElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
97
        self.python_api = sub_wrapper()
98 99 100 101 102 103 104
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
105
            'Y': convert_float_to_uint16(y),
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


122
@skip_check_grad_ci(
123 124
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
125 126 127
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
128
        self.python_api = sub_wrapper()
129
        self.inputs = {
130
            'X': np.random.rand(10, 3, 4).astype(np.float64),
131
            'Y': np.random.rand(1).astype(np.float64),
132 133 134 135
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
136 137 138
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
139
        self.python_api = sub_wrapper()
G
gongweibao 已提交
140
        self.inputs = {
141 142
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
G
gongweibao 已提交
143 144 145 146 147 148 149
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
150
        self.python_api = sub_wrapper(shape=[100, 1, 1])
G
gongweibao 已提交
151
        self.inputs = {
152
            'X': np.random.rand(100, 3, 2).astype(np.float64),
153
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
154 155 156 157
        }

        self.attrs = {'axis': 0}
        self.outputs = {
158
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
159 160 161 162 163 164
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
165
        self.python_api = sub_wrapper(shape=[1, 100, 1])
G
gongweibao 已提交
166
        self.inputs = {
167
            'X': np.random.rand(2, 100, 3).astype(np.float64),
168
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
169 170 171 172
        }

        self.attrs = {'axis': 1}
        self.outputs = {
173
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
174 175 176 177 178 179
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
180
        self.python_api = sub_wrapper(shape=[1, 1, 100])
G
gongweibao 已提交
181
        self.inputs = {
182
            'X': np.random.rand(2, 3, 100).astype(np.float64),
183
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
184 185 186
        }

        self.outputs = {
187
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
188 189 190 191 192 193
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
194
        self.python_api = sub_wrapper(shape=[1, 10, 12, 1])
G
gongweibao 已提交
195
        self.inputs = {
196
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
197
            'Y': np.random.rand(10, 12).astype(np.float64),
G
gongweibao 已提交
198 199 200 201
        }

        self.attrs = {'axis': 1}
        self.outputs = {
202
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
203 204 205
        }


206 207 208
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
209
        self.python_api = sub_wrapper()
210
        self.inputs = {
211
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
212
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64),
213 214 215 216
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


217 218 219
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
220
        self.python_api = sub_wrapper()
221
        self.inputs = {
222
            'X': np.random.rand(2, 3, 100).astype(np.float64),
223
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
224 225 226 227 228 229 230
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
231
        self.python_api = sub_wrapper()
232
        self.inputs = {
233
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
234
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64),
235 236 237 238 239 240 241
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
242 243 244 245 246

        def sub_func(x, y, axis=2):
            return x.reshape([1, 1, 10, 12]) - y

        self.python_api = sub_func
247
        self.inputs = {
248
            'X': np.random.rand(10, 12).astype(np.float64),
249
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64),
250 251 252 253 254
        }

        self.attrs = {'axis': 2}

        self.outputs = {
255
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
256 257 258
        }


C
chentianyu03 已提交
259 260 261
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
262
        self.python_api = sub_wrapper()
C
chentianyu03 已提交
263 264 265 266 267 268 269
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
270
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
271 272 273 274 275 276 277 278 279
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
280 281
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
282
        self.y = np.random.random(self.shape).astype(
283 284
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
285 286 287
        self.out = self.x - self.y

    def init_grad_input_output(self):
288 289 290
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
291 292 293 294 295 296 297
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
298 299 300 301 302 303
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
304 305

    def test_check_grad_ingore_x(self):
306 307 308 309 310 311 312
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
313 314

    def test_check_grad_ingore_y(self):
315 316 317 318 319 320 321
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
322 323 324 325 326 327


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
328 329
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
330 331 332
        self.out = self.x - self.y

    def init_grad_input_output(self):
333 334 335
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
336 337 338 339
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
class TestSubtractApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
358
                    "y": np.array([1, 5, 2]).astype('float32'),
359 360 361 362 363 364 365 366
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
367
            z_expected = np.array([1.0, -2.0, 2.0])
368 369 370 371 372 373 374 375 376 377
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
378
            z_expected = np.array([1.0, -2.0, 2.0])
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


445
class TestFloatElementwiseSubop(unittest.TestCase):
446
    def test_dygraph_sub(self):
447 448 449 450 451 452 453 454 455 456 457
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
458 459 460
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
461 462 463 464

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
465 466 467
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
468 469 470 471

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
472 473 474
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
475 476 477 478

        paddle.enable_static()


479
class TestFloatElementwiseSubop1(unittest.TestCase):
480
    def test_dygraph_sub(self):
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray - tenor
        expect_out = np_a - np_b
        actual_out = np_a - tensor_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        # normal case: tenor - nparray
        actual_out = tensor_a - np_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        paddle.enable_static()


G
gongweibao 已提交
505
if __name__ == '__main__':
C
chentianyu03 已提交
506
    paddle.enable_static()
G
gongweibao 已提交
507
    unittest.main()