optimizer.py 301.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40 41 42 43 44 45 46 47
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from .clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
    ClipGradByGlobalNorm,
)
48 49 50
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
51
from .dygraph import base as imperative_base
52
from .dygraph import no_grad
53 54 55 56
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
57 58 59
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
60
from functools import cmp_to_key
61
from .wrapped_decorator import signature_safe_contextmanager
62
import warnings
63
from paddle import _C_ops, _legacy_C_ops
64 65 66 67 68
from ..fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _current_expected_place,
)
69

70
__all__ = [
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
98
]
Q
Qiao Longfei 已提交
99 100


101
class Optimizer:
Q
Qiao Longfei 已提交
102 103 104
    """Optimizer Base class.

    Define the common interface of an optimizer.
105 106
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
107 108
    """

109
    @imperative_base.no_grad
110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
120 121
        """
        Args:
122 123
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
124 125
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
126
        # Because of the loop import, so place it in the function body
127
        from paddle.optimizer.lr import LRScheduler
128 129 130 131

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
132
        self._name = name
J
Jiabin Yang 已提交
133
        if framework._non_static_mode():
134 135 136
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
137
                raise TypeError(
138
                    "learning rate should be float or LRScheduler, got %s here"
139 140
                    % type(learning_rate)
                )
141
            if self._parameter_list is None:
142 143 144
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
145 146 147 148 149 150
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
151 152
                            % regularization.__str__()
                        )
153
                        break
M
minqiyang 已提交
154
        else:
155 156 157
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
158
                raise TypeError(
159
                    "learning rate should be float or LRScheduler, got %s here"
160 161
                    % type(learning_rate)
                )
M
minqiyang 已提交
162

163 164 165 166 167
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
168
        self.regularization = regularization
169
        self._grad_clip = grad_clip
170
        self._learning_rate = learning_rate
171 172
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
173

D
dzhwinter 已提交
174
        self._dtype = None
L
Leo Chen 已提交
175 176 177 178
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

179
        # each program should have a independent learning rate
180
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
181
        self._learning_rate_map = dict()
182
        if isinstance(self._learning_rate, framework.Variable):
183
            self._learning_rate_map[
184 185
                framework.default_main_program()
            ] = self._learning_rate
186 187 188 189 190
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
191 192
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
193
        self.helper = LayerHelper(self.__class__.__name__)
194
        self._opti_name_list = []
H
hong 已提交
195
        self._accumulators_holder = {}
196
        self._param_device_map = dict()
197 198
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
199
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
200 201
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
202 203 204 205

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
206 207
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
208 209 210

        Args: None
        Return:
T
tianshuo78520a 已提交
211
            state_dict(dict) : dict contains all the variable used by optimizer
212

H
hong 已提交
213 214 215 216
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
217 218 219 220 221 222

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
223 224

        '''
225
        from paddle.optimizer.lr import LRScheduler
226

H
hong 已提交
227 228 229 230
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
231 232
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
233
        # global step if use lr decay
234
        if isinstance(self._learning_rate, LRScheduler):
235 236
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
237
        if isinstance(self._learning_rate, LearningRateDecay):
238 239 240 241
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
242 243 244
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
245

246 247 248
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
249

250
                state_dict['global_step'] = var_temp
H
hong 已提交
251 252 253
        return state_dict

    @framework.dygraph_only
254
    def set_state_dict(self, state_dict):
H
hong 已提交
255
        '''
T
tianshuo78520a 已提交
256
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
257

258
        Args:
H
hong 已提交
259 260 261
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
262

H
hong 已提交
263 264
        Examples:
            .. code-block:: python
265

266 267
                import paddle
                import paddle.fluid as fluid
268 269 270

                paddle.disable_static()

271
                emb = paddle.nn.Embedding(10, 10)
272

273
                state_dict = emb.state_dict()
274
                fluid.save_dygraph(state_dict, "paddle_dy")
275

276
                scheduler = paddle.optimizer.lr.NoamDecay(
277 278 279 280
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
281
                state_dict = adam.state_dict()
282
                fluid.save_dygraph(state_dict, "paddle_dy")
283

284
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
285
        '''
286
        from paddle.optimizer.lr import LRScheduler
287

288
        if isinstance(self._learning_rate, LRScheduler):
289
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
290 291

        if isinstance(self._learning_rate, LearningRateDecay):
292 293 294
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
295 296 297
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
298 299 300 301 302
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
303 304 305 306 307
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
308 309 310

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
311 312 313 314 315
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
316 317 318 319
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
320 321
                        type(global_step),
                    )
H
hong 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
335 336 337
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
338

339 340 341 342 343
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
344

345 346 347 348 349
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
350 351 352

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
353 354 355
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
356 357 358
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
359
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
360

361
        for k, v in self._global_accumulators.items():
362 363 364
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
365
            _load_state_para(state_dict, v)
366

367 368 369
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

370 371
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
372

373 374 375 376 377 378 379 380 381
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
382
    def _create_global_learning_rate(self):
383
        from paddle.optimizer.lr import LRScheduler
384

385
        if isinstance(self._learning_rate, LRScheduler):
386 387 388 389 390 391 392 393 394 395
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
396 397
                    dtype='float32' if self._dtype is None else self._dtype,
                )
398 399 400
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
401
                self._learning_rate_map[
402 403
                    framework.default_main_program()
                ] = lr_var
404 405 406

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
407 408
                lr_var, initializer=Constant(value=lr_value)
            )
409 410
            return

411 412 413
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
414 415 416 417 418
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
419 420 421
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = layers.create_global_var(
M
minqiyang 已提交
422 423 424 425
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
426 427
                        persistable=True,
                    )
428
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
429
            elif isinstance(self._learning_rate, LearningRateDecay):
430
                self._learning_rate_map[
431 432
                    framework.default_main_program()
                ] = self._learning_rate()
433
            else:
Q
qiaolongfei 已提交
434
                raise TypeError(
435 436
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
437
        else:
438 439 440 441
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
442 443 444 445 446 447
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
448

449
            # create learning rate in the current main program
450
            self._learning_rate_map[
451 452 453 454 455 456 457 458
                framework.default_main_program()
            ] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
459

460 461 462 463
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
464

465 466 467 468 469 470 471 472
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
473

474 475 476 477
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
478
                import paddle
479

480
                with fluid.dygraph.guard():
481
                    linear = paddle.nn.Linear(10, 10)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
514 515
                % (type(value))
            )
516 517 518 519 520 521 522 523
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
524 525
                if in_dygraph_mode():
                    place = _current_expected_place()
526 527 528 529 530 531 532
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
533 534

                elif _in_legacy_dygraph():
535 536 537 538 539 540 541 542 543
                    _legacy_C_ops.fill_constant(
                        current_lr,
                        'value',
                        float(value),
                        'dtype',
                        current_lr.dtype,
                        'shape',
                        list(current_lr.shape),
                    )
544
                else:
545 546 547 548 549 550 551 552 553 554 555 556 557
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
558
        else:
559 560 561
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
562 563
            self._learning_rate_map[framework.default_main_program()] = value

564 565 566
    @framework.dygraph_only
    def current_step_lr(self):
        """
567
        :api_attr: imperative
568

569 570 571 572 573 574 575 576 577 578 579
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np
580
                import paddle
581 582 583 584 585 586 587 588 589 590 591

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
592
                    linear = paddle.nn.Linear(10, 10)
593 594
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
595
                    loss = paddle.mean(out)
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
614
        if isinstance(current_lr, framework.Variable):
615 616 617 618
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
619 620 621
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
622 623 624 625 626 627 628
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
629
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
630 631 632 633
        """
        get global decayed learning rate
        :return:
        """
634 635
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
636
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
637

Q
Qiao Longfei 已提交
638
    def _append_optimize_op(self, block, param_and_grad):
639
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
640 641
        raise NotImplementedError()

642 643 644 645
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
646 647
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
648
        else:
W
Wu Yi 已提交
649
            if param_lr == 1.0:
Y
yuyang18 已提交
650
                return self._global_learning_rate()
W
Wu Yi 已提交
651
            else:
X
Xin Pan 已提交
652
                with default_main_program()._lr_schedule_guard(
653 654
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
655
                    return self._global_learning_rate() * param_lr
656 657 658 659 660 661 662

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
663
        """
664 665
        pass

666
    def _finish_update(self, block, parameters_and_grads):
667 668 669 670 671 672 673 674
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
675
            None
676 677 678
        """
        pass

679 680 681 682 683 684 685 686 687 688
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
689 690 691 692 693 694 695 696 697
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
698 699
        if self._name is not None:
            name = self._name + "_" + name
700 701 702 703
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
704
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
705
                return self._accumulators[name][param.name]
706 707
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
708 709 710
                    name, param.name
                )
            )
711
        if shape is None:
712
            shape = param.shape
Q
Qiao Longfei 已提交
713
        assert isinstance(self.helper, LayerHelper)
714 715 716 717 718

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
719
        var = self.helper.create_global_variable(
720
            name=var_name,
Q
Qiao Longfei 已提交
721
            persistable=True,
F
fengjiayi 已提交
722
            dtype=dtype or param.dtype,
723
            type=core.VarDesc.VarType.LOD_TENSOR
724 725
            if framework._non_static_mode()
            else (param.type if type is None else type),
H
hong 已提交
726
            shape=shape,
727 728
            belong_to_optimizer=True,
        )
729 730 731 732
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
733 734
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
735

J
Jiabin Yang 已提交
736
        if framework._non_static_mode():
H
hong 已提交
737
            if len(self._accumulators_holder) > 0:
738 739 740 741 742
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
743 744
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
745
        self._accumulators[name][param.name] = var
746
        return var
747

748 749 750 751 752 753 754 755 756
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
757 758 759 760 761 762 763 764 765 766 767 768 769
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
770
        if name in self._global_accumulators:
J
Jiabin Yang 已提交
771
            if framework._non_static_mode():
772 773
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
774
        if shape is None:
775 776 777 778 779 780 781 782 783 784 785 786 787
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
788 789
            belong_to_optimizer=True,
        )
790 791 792 793
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
794 795
                var, initializer=Constant(value=float(fill_value))
            )
796

J
Jiabin Yang 已提交
797
        if framework._non_static_mode():
798
            if len(self._accumulators_holder) > 0:
799 800 801 802 803
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
804 805 806 807 808
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

809 810 811 812 813 814 815 816
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
817
            accumulator variable
818
        """
W
whs 已提交
819 820
        if self._name is not None:
            name = self._name + "_" + name
821 822 823 824
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
825 826
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
827 828 829
                    name, param.name
                )
            )
830 831
        return self._accumulators[name][param.name]

832 833 834 835 836 837 838 839 840 841 842
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
843
        if name not in self._global_accumulators:
844 845 846
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

847 848 849 850 851
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
852 853
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
854 855 856 857 858
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
859 860
                            device_attr_name
                        )
861
                        break
862 863 864 865 866 867 868

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

869
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
870 871 872
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
873
          parameters_and_grads(list(tuple(Variable, Variable))):
874
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
875 876

        Returns:
877
          return_op_list: a list of operators that will complete one step of
878 879 880
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
881
        """
882 883 884 885 886
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
887
        # for parameters and extend _finish_update method to add custom ops.
888

889
        # Allways called under program_guard use global block as loss block
890 891 892
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

893
        global_block = framework.default_main_program().global_block()
894 895 896
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
897 898 899
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
900
            target_block = framework.default_main_program().blocks[
901 902
                current_block.backward_block_idx
            ]
903 904

        start = len(target_block.ops)
905

906
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
907
        self._create_accumulators(
908 909
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
910 911
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
912
        if framework._non_static_mode():
913 914 915
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
916 917
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
918 919 920 921 922
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
923 924
                    param_and_grad
                ), name_scope("optimizer"):
925
                    if param_and_grad[0].trainable is True:
926
                        device = self._get_device_for_param(
927 928
                            param_and_grad[0].name
                        )
929 930
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
931 932
                                target_block, param_and_grad
                            )
933 934 935

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
936
        self._finish_update(target_block, parameters_and_grads)
937

938 939
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
940 941

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
942 943 944 945 946 947 948 949 950
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
951 952
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
953 954 955 956 957 958 959 960
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
961 962
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
963 964 965 966 967 968
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
969
            param_and_grad = [table_param, table_grad]
970 971 972
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
973 974 975 976 977 978 979
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
980
                        "LearningRate": self._create_param_lr(param_and_grad),
981
                    },
982 983
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
984 985
        return new_param_grads, (table_param, table_grad), sgd_op

986 987 988 989 990 991 992 993
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
994
        """
995
        The first part of ``minimize``, do auto-diff to append backward operations for
996 997 998
        the current program.

        Args:
999 1000 1001 1002
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1003
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1004 1005
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1006
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1007 1008 1009
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1010

1011
        Return:
1012 1013
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1014

1015
        Examples:
1016
            See examples in ``apply_gradients``.
1017
        """
1018
        act_no_grad_set = None
J
Jiabin Yang 已提交
1019
        if framework._non_static_mode():
1020
            pass
L
Leo Chen 已提交
1021 1022
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1023

L
Leo Chen 已提交
1024 1025 1026 1027
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1028
        if framework._non_static_mode():
1029 1030 1031
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1032

C
chengduo 已提交
1033
            params_grads = []
1034
            for param in parameter_list:
C
chengduo 已提交
1035 1036
                if not param.trainable:
                    continue
1037
                if param._grad_ivar() is not None:
C
chengduo 已提交
1038
                    # create gradient variable
1039
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1040
                    params_grads.append((param, grad_var))
1041
        else:
C
chengduo 已提交
1042 1043 1044
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1045
                assert isinstance(callbacks, list)
C
chengduo 已提交
1046
            program = loss.block.program
1047 1048
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1049
                "Maybe that you should call paddle.mean to process the current loss.".format(
1050 1051 1052 1053 1054 1055
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1056
            with program_guard(program, startup_program):
1057 1058 1059
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1060
        return params_grads
1061

1062
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1063
        """Create and add backward regularization Operators
1064

1065 1066 1067
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1068
        if grad is None or (
1069 1070 1071 1072 1073 1074
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
1085
        if framework._non_static_mode():
1086
            return _legacy_C_ops.sum([grad, regularization_term])
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1099 1100
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1101 1102 1103

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1104
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1105 1106 1107

        return new_grad

1108 1109 1110
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1111
        r"""Create and add backward regularization Operators
1112

1113 1114 1115 1116
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1117

1118 1119 1120 1121 1122
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1123

1124 1125 1126
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1127

1128 1129 1130 1131
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1132
        if framework._non_static_mode():
1133
            for param, grad in parameters_and_grads:
1134
                new_grad = self._create_regularization_of_grad(
1135 1136
                    param, grad, regularization
                )
1137 1138 1139 1140 1141
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1142 1143 1144 1145 1146
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1147 1148 1149 1150
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1151 1152
                            % regularization.__str__()
                        )
1153 1154
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1155 1156
                            param, grad, regularization
                        )
1157 1158 1159
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1160 1161 1162 1163 1164 1165 1166
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1167 1168 1169 1170
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1171 1172
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1173 1174
                    "the regularizer is set".format(p.name)
                )
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1189 1190
            belong_to_optimizer=True,
        )
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1201 1202
            belong_to_optimizer=True,
        )
1203 1204

        with program_guard(default_main_program()):
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1234

1235
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1236
        # so the shape of flatten_param and flatten_grad will be inferred.
1237 1238 1239 1240 1241 1242
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1243 1244 1245

        return [(flatten_param, flatten_grad)]

1246 1247 1248 1249 1250 1251 1252
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1253

1254 1255
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1256

1257 1258 1259
        Examples:
            .. code-block:: python

1260
                import paddle.fluid as fluid
1261 1262 1263 1264 1265 1266 1267 1268 1269
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1270 1271
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1272
            if self._grad_clip is None or isinstance(
1273 1274
                self._grad_clip, ClipGradByGlobalNorm
            ):
1275 1276
                params_grads = self.flatten_param_grads(params_grads)

1277
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1278 1279 1280 1281
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1282 1283

        # Add regularization if any
1284 1285 1286
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1287 1288 1289 1290

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1303
        if framework._non_static_mode():
1304 1305 1306 1307
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1308 1309
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1310
                params_grads = self.append_regularization_ops(
1311 1312
                    params_grads, self.regularization
                )
C
chengduo 已提交
1313 1314 1315 1316 1317 1318 1319
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1320
    def _get_no_grad_set(self, loss, no_grad_set=None):
1321
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1322 1323
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1324 1325
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1326 1327 1328 1329 1330
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1331 1332 1333 1334
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1335 1336

        If not, new gradient will accumulat on previous gradient.
1337

1338 1339
        Returns:
            None
1340

1341 1342 1343 1344
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1345
                import paddle
1346 1347 1348 1349 1350
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
1351
                    linear = paddle.nn.Linear(13, 5)
1352
                    # This can be any optimizer supported by dygraph.
1353
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1365
    @imperative_base.no_grad
1366 1367 1368
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1369
        """
1370
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1371

1372
        Args:
1373 1374 1375 1376
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1377
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1378 1379
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1380
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1381
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1382

1383
        Returns:
1384 1385 1386
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1387 1388
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1389
            ``fetch_list`` before run, see details in ``Executor``.
1390 1391 1392

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1393
        """
C
chengduo 已提交
1394
        assert isinstance(loss, Variable), "The loss should be an Variable."
1395

1396 1397 1398
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1399

1400 1401 1402 1403 1404 1405
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1406

1407 1408 1409
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1410

Q
Qiao Longfei 已提交
1411
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1412 1413 1414


class SGDOptimizer(Optimizer):
1415
    r"""
Q
qiaolongfei 已提交
1416 1417 1418 1419 1420 1421
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1422 1423 1424
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1425
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1426 1427
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1428 1429 1430 1431 1432
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1433 1434 1435
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1436
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1437 1438
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1439 1440 1441 1442

    Examples:
        .. code-block:: python

1443 1444 1445 1446
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1447
            paddle.enable_static()
1448 1449 1450 1451 1452 1453
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
1454
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1455
                avg_cost = paddle.mean(cost)
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1469 1470
    """

1471 1472 1473 1474 1475 1476 1477 1478 1479
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1480
        assert learning_rate is not None
1481
        super().__init__(
1482 1483 1484 1485 1486 1487
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1488
        self.type = "sgd"
1489
        self._use_mkldnn = False
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1501 1502 1503 1504 1505 1506 1507
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1508
            block = self.helper.startup_program.global_block()
1509 1510 1511 1512 1513 1514 1515 1516 1517
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1531 1532 1533 1534
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1535 1536 1537 1538
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1539

1540
    @no_grad
1541
    def _append_optimize_op(self, block, param_and_grad):
1542

1543 1544 1545 1546 1547 1548 1549 1550 1551
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1552

1553
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1554
        if in_dygraph_mode():
1555 1556 1557 1558 1559 1560 1561
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1562 1563
            return None
        if _in_legacy_dygraph():
1564 1565 1566 1567 1568 1569 1570 1571
            _legacy_C_ops.sgd(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                param_and_grad[0],
                master_weight,
            )
1572
            return None
1573

1574
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1575
        # create the optimize op
1576 1577 1578
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
1579
            "LearningRate": lr,
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1590 1591 1592 1593 1594 1595 1596
        sgd_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
Q
Qiao Longfei 已提交
1597 1598

        return sgd_op
1599 1600 1601


class MomentumOptimizer(Optimizer):
1602
    r"""
Q
qiaolongfei 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1616
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1617 1618 1619

        & else:

Q
qiaolongfei 已提交
1620
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1621

1622 1623 1624 1625
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1626
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1627 1628
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1629
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1630 1631 1632 1633 1634
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1635 1636 1637
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1638
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1639 1640
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1641 1642 1643 1644

    Examples:
        .. code-block:: python

1645 1646 1647 1648
            import paddle
            import paddle.fluid as fluid
            import numpy as np

1649
            paddle.enable_static()
1650 1651 1652 1653 1654 1655
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
1656
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
1657
                avg_cost = paddle.mean(cost)
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1671 1672 1673
    """
    _velocity_acc_str = "velocity"

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1684 1685
        assert learning_rate is not None
        assert momentum is not None
1686
        super().__init__(
1687 1688 1689 1690 1691 1692
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1693 1694
        self.type = "momentum"
        self._momentum = momentum
1695
        self._use_nesterov = bool(use_nesterov)
1696 1697 1698 1699 1700

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1701
            self._add_accumulator(self._velocity_acc_str, p)
1702 1703 1704 1705

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1706 1707 1708
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1709
        lr = self._create_param_lr(param_and_grad)
1710
        master_weight = None
J
Jiabin Yang 已提交
1711
        if framework._non_static_mode():
1712
            _, _, _ = _legacy_C_ops.momentum(
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1726
            return None
1727

1728
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1729 1730 1731 1732
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1733
            "LearningRate": [lr],
1734 1735 1736 1737
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
1738
            "VelocityOut": [velocity_acc],
1739
        }
1740
        # create the momentum optimize op
1741 1742 1743 1744 1745 1746 1747
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1748 1749

        return momentum_op
1750 1751


1752
class LarsMomentumOptimizer(Optimizer):
1753
    r"""
1754 1755 1756 1757 1758 1759 1760 1761 1762
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1763
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1764 1765 1766

        & param = param - velocity

1767 1768 1769 1770 1771 1772
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1773
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1774 1775
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1776 1777 1778 1779 1780
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1781 1782 1783
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1784
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1785 1786
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1787 1788
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1789 1790 1791
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1792

1793 1794 1795
    Examples:
        .. code-block:: python

1796
            import paddle
1797 1798 1799
            import paddle.fluid as fluid
            import numpy as np

1800
            paddle.enable_static()
1801 1802 1803 1804
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
1805
            out = paddle.sum(out)
1806 1807 1808 1809 1810 1811 1812 1813
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1814 1815 1816
    """
    _velocity_acc_str = "velocity"

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1832 1833
        assert learning_rate is not None
        assert momentum is not None
1834
        super().__init__(
1835 1836 1837 1838 1839 1840
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1841 1842 1843 1844
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1845 1846 1847 1848 1849
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1850 1851 1852 1853 1854
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1855 1856 1857 1858
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1859

1860 1861
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
1862 1863 1864 1865 1866 1867 1868
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1869
            block = self.helper.startup_program.global_block()
1870 1871 1872 1873 1874 1875 1876 1877 1878
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1879
            self._master_weights[param.name] = var
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
1892 1893 1894 1895 1896 1897
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
1898
        target_name = target_param.name
1899 1900 1901 1902
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
1903 1904
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
1905 1906 1907
                    name, target_name
                )
            )
1908
        return self._accumulators[name][target_name]
1909 1910 1911 1912 1913

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1914 1915 1916 1917
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1918 1919 1920 1921
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1922 1923 1924 1925
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1926 1927 1928 1929
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1930 1931 1932 1933 1934 1935 1936 1937
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1938 1939 1940
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1941 1942
        lr = self._create_param_lr(param_and_grad)

1943 1944 1945 1946 1947 1948 1949 1950 1951
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1952 1953 1954

        attrs = {
            "mu": self._momentum,
1955
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1956
            "lars_weight_decay": [_lars_weight_decay],
1957
            "multi_precision": find_master,
L
limingshu 已提交
1958
            "epsilon": self._epsilon,
1959
            "rescale_grad": self._rescale_grad,
1960 1961 1962 1963 1964 1965
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1966
            "LearningRate": lr,
1967 1968 1969 1970 1971 1972 1973 1974
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
1975
        if framework._non_static_mode():
1976
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1996 1997
        else:
            # create the momentum optimize op
1998 1999 2000 2001 2002 2003 2004
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
2005

2006
            return momentum_op
2007 2008


2009
class AdagradOptimizer(Optimizer):
2010
    r"""
2011 2012
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2013

2014
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2015 2016 2017 2018 2019 2020 2021

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2022 2023 2024 2025 2026 2027
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2028 2029 2030
    for numerical stability to avoid the division by zero error.

    Args:
2031 2032 2033 2034
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2035
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2036 2037
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2038 2039 2040 2041 2042
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2043 2044 2045
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2046
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2047 2048 2049 2050 2051
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2052 2053 2054 2055

    Examples:
        .. code-block:: python

2056
            import paddle
2057
            import numpy as np
2058
            import paddle.fluid as fluid
2059

2060
            paddle.enable_static()
2061
            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2062
            inp = fluid.data(name="inp", shape=[2, 2])
2063
            out = fluid.layers.fc(inp, size=3)
2064
            out = paddle.sum(out)
2065
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2066 2067 2068 2069 2070 2071 2072
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2073 2074 2075
    """
    _moment_acc_str = "moment"

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2086 2087
        assert learning_rate is not None
        assert epsilon is not None
2088
        super().__init__(
2089 2090 2091 2092 2093 2094
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2095 2096
        self.type = "adagrad"
        self._epsilon = epsilon
2097
        self.initial_accumulator_value = initial_accumulator_value
2098 2099 2100 2101 2102

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2103 2104 2105 2106 2107
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2108 2109 2110 2111

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2112 2113 2114
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2115
        if in_dygraph_mode():
2116 2117 2118 2119 2120 2121 2122
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2123 2124
            return None
        elif _in_legacy_dygraph():
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
            _legacy_C_ops.adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
            )
C
caozhou 已提交
2135
            return None
2136 2137 2138 2139 2140 2141 2142 2143
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2144
                    "LearningRate": self._create_param_lr(param_and_grad),
2145 2146 2147
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2148
                    "MomentOut": moment_acc,
2149 2150
                },
                attrs={"epsilon": self._epsilon},
2151 2152
                stop_gradient=True,
            )
2153

2154
            return adagrad_op
2155 2156 2157


class AdamOptimizer(Optimizer):
2158
    r"""
T
tianshuo78520a 已提交
2159
    The Adam optimizer uses an optimization described at the end
2160 2161 2162
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2163

2164
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2179 2180
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2181
    Args:
2182 2183
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2184 2185
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2186
            The default value is 0.9.
2187 2188
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2189
            The default value is 0.999.
2190 2191
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2192
            The default value is 1e-08.
H
hong 已提交
2193
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2194 2195
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2196 2197 2198 2199 2200
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2201 2202 2203
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2204
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2215
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2216
            for whole model instead of creating beta_pow for each parameter. Default is false.
2217 2218
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2219
            use same align_size as allocator.
Q
qiaolongfei 已提交
2220 2221 2222 2223

    Examples:
        .. code-block:: python

2224 2225 2226
            import paddle
            import paddle.fluid as fluid

2227
            paddle.enable_static()
2228 2229 2230
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2231 2232
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2233
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
2234
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2235
                avg_cost = paddle.mean(cost)
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2248

2249 2250 2251 2252 2253 2254 2255
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

2256
            paddle.enable_static()
2257 2258 2259 2260 2261 2262
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
2263
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
2264
                avg_cost = paddle.mean(cost)
2265 2266

                # define beta decay variable
2267
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2284 2285 2286 2287 2288 2289 2290
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2291 2292 2293 2294 2295 2296 2297

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2298
                    return beta1, beta2, epsilon
2299

2300
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2301 2302
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2303
                                                    beta1=beta1,
2304 2305
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2316 2317 2318
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2319 2320
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2321

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2337 2338 2339 2340
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2341
        super().__init__(
2342 2343 2344 2345 2346 2347 2348 2349
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2350 2351 2352 2353
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2354
        self._lazy_mode = lazy_mode
2355
        self._use_global_beta_pow = use_global_beta_pow
2356 2357 2358 2359 2360 2361

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2362 2363
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2364 2365 2366 2367
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2368 2369 2370
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2371
                    shape=[1],
2372 2373 2374
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2375 2376 2377
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2378 2379 2380
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2381
                    shape=[1],
2382 2383 2384
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2385 2386
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2387
                name=self._beta1_pow_acc_str,
2388 2389 2390
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2391
                shape=[1],
2392 2393 2394
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2395
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2396
                name=self._beta2_pow_acc_str,
2397 2398 2399
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2400
                shape=[1],
2401 2402 2403
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2404 2405 2406 2407

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2408 2409 2410 2411 2412 2413
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2414 2415
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2416 2417
                self._beta1_pow_acc_str
            )
2418
            beta2_pow_acc = self._get_global_accumulator(
2419 2420
                self._beta2_pow_acc_str
            )
2421
        else:
2422 2423 2424 2425 2426 2427
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2428
        lr = self._create_param_lr(param_and_grad)
2429
        # create the adam optimize op
2430

J
Jiabin Yang 已提交
2431
        if framework._non_static_mode():
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2442
            master_weight = None
2443
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2471 2472 2473

            return None

2474
        inputs = {
2475 2476
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2477
            "LearningRate": [lr],
2478 2479 2480
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2481
            "Beta2Pow": [beta2_pow_acc],
2482
        }
2483 2484 2485 2486 2487 2488 2489

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2490
        outputs = {
2491 2492 2493 2494 2495
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2496 2497 2498
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2499
            "min_row_size_to_use_multithread": 1000,
2500
            'use_global_beta_pow': self._use_global_beta_pow,
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2511 2512 2513 2514
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2515

2516 2517 2518 2519 2520 2521 2522
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2523 2524 2525

        return adam_op

2526
    def _finish_update(self, block, parameters_and_grads):
2527
        r"""Update beta1_pow and beta2_pow accumulator"""
2528 2529 2530
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2531 2532
                self._beta1_pow_acc_str
            )
2533
            beta2_pow_acc = self._get_global_accumulator(
2534 2535
                self._beta2_pow_acc_str
            )
2536 2537 2538

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2539
                outputs = {"Out": beta1_pow_acc}
2540 2541
                attrs = {}
                if isinstance(self._beta1, Variable):
2542 2543
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2544 2545 2546 2547 2548 2549 2550
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2551 2552
                else:
                    attrs['scale'] = self._beta1
2553 2554 2555 2556 2557 2558 2559
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2560 2561

                inputs = {"X": beta2_pow_acc}
2562
                outputs = {"Out": beta2_pow_acc}
2563 2564
                attrs = {}
                if isinstance(self._beta2, Variable):
2565 2566
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2567 2568 2569 2570 2571 2572 2573
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2574 2575
                else:
                    attrs['scale'] = self._beta2
2576 2577 2578 2579 2580 2581 2582
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2583

2584 2585

class AdamaxOptimizer(Optimizer):
2586
    r"""
2587
    The Adamax optimizer is implemented based on the Adamax Optimization
2588 2589 2590
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2591

2592
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2606
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2620
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2621 2622
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2623 2624 2625 2626 2627
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2628 2629 2630
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2631
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2632 2633 2634 2635 2636 2637
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2638

2639 2640 2641 2642 2643
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2644 2645
          import paddle
          paddle.enable_static()
2646 2647 2648 2649 2650 2651 2652 2653

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2654
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2655
              hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
2656
              loss = paddle.mean(hidden)
2657
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2658 2659 2660 2661 2662 2663 2664 2665 2666
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2667 2668 2669
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2670
    _beta1_pow_acc_str = "beta1_pow_acc"
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2683 2684 2685 2686
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2687
        super().__init__(
2688 2689 2690 2691 2692 2693
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2694 2695 2696 2697 2698 2699 2700 2701
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2702 2703
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2704 2705 2706 2707 2708 2709
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2710 2711 2712 2713 2714

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
2715 2716 2717 2718 2719 2720
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2721 2722

        if framework.in_dygraph_mode():
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
2734
        elif framework._in_legacy_dygraph():
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
            _legacy_C_ops.adamax(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                param_and_grad[0],
                moment,
                inf_norm,
                "beta1",
                self._beta1,
                "beta2",
                self._beta2,
                "epsilon",
                self._epsilon,
            )
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
2762
                    "Beta1Pow": beta1_pow_acc,
2763 2764 2765 2766
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
2767
                    "InfNormOut": inf_norm,
2768 2769 2770 2771
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
2772
                    "epsilon": self._epsilon,
2773
                },
2774 2775
                stop_gradient=True,
            )
2776

2777
            return adamax_op
2778

2779
    def _finish_update(self, block, parameters_and_grads):
2780
        """Update Beta1 Power accumulator"""
2781
        assert isinstance(block, framework.Block)
2782
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2783
            if grad is None or param.trainable is False:
2784
                continue
2785 2786 2787 2788 2789 2790
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
J
Jiabin Yang 已提交
2791
                if framework._non_static_mode():
2792
                    if framework.in_dygraph_mode():
2793 2794 2795
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
2796
                    else:
2797 2798 2799
                        tmp = _legacy_C_ops.scale(
                            beta1_pow_acc, "scale", self._beta1
                        )
2800 2801
                    beta1_pow_acc.copy_(tmp, False)
                else:
2802 2803 2804 2805 2806 2807 2808
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2809 2810


2811
class DpsgdOptimizer(Optimizer):
2812
    r"""
2813 2814 2815 2816 2817 2818 2819 2820
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy
2
201716010711 已提交
2821 2822
          import paddle
          paddle.enable_static()
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
2833
              loss = paddle.mean(hidden)
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2851
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2852 2853
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2854 2855 2856 2857
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2858 2859 2860 2861 2862 2863 2864 2865
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2866 2867 2868 2869
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2870
        super().__init__(
2871 2872
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2873 2874 2875 2876
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2877 2878 2879 2880 2881 2882 2883
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2884 2885 2886 2887 2888

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2889
        if self._seed is None:
Z
zhongpu 已提交
2890 2891
            self._seed = 0

J
Jiabin Yang 已提交
2892
        if framework._non_static_mode():
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2907
        else:
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2924

2925
            return dpsgd_op
2926 2927


2928
class DecayedAdagradOptimizer(Optimizer):
2929
    r"""
2930 2931 2932
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2933

2934
    The parameter ``param_out`` update rule with gradient ``grad``:
2935 2936 2937 2938 2939 2940 2941

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2942 2943 2944 2945
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2946 2947 2948
    stability to avoid the division by zero error.

    Args:
2949 2950 2951 2952 2953
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2954
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2955 2956
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2957 2958 2959 2960 2961
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2962 2963 2964
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2965
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2966 2967 2968 2969 2970 2971
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2972 2973 2974 2975

    Examples:
        .. code-block:: python

2976 2977
            import paddle.fluid as fluid

2978 2979 2980 2981
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2982
            optimizer.minimize(cost)
2983 2984 2985
    """
    _moment_acc_str = "moment"

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2996 2997 2998 2999
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3000
        super().__init__(
3001 3002 3003 3004 3005 3006
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3020 3021 3022
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3023

J
Jiabin Yang 已提交
3024
        if framework._non_static_mode():
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3037 3038 3039 3040 3041 3042 3043 3044
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3045
                    "LearningRate": self._create_param_lr(param_and_grad),
3046 3047 3048
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3049
                    "MomentOut": moment_acc,
3050
                },
3051 3052 3053
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3054

3055
            return decayed_adagrad_op
3056 3057


3058
class AdadeltaOptimizer(Optimizer):
3059
    r"""
Z
Zeng Jinle 已提交
3060
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3061

Z
Zeng Jinle 已提交
3062
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3063 3064 3065
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3066

Z
Zeng Jinle 已提交
3067 3068
    .. math::

Z
Zeng Jinle 已提交
3069
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3070

Z
Zeng Jinle 已提交
3071
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3072

Z
Zeng Jinle 已提交
3073
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3074 3075

    Args:
Z
Zeng Jinle 已提交
3076 3077 3078
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3079
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3080 3081
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3082 3083 3084 3085 3086
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3087 3088 3089
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3090
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3091 3092 3093
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3094 3095 3096 3097

    Examples:
        .. code-block:: python

3098
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3099

3100
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3101 3102
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3103 3104
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3105

Z
Zeng Jinle 已提交
3106 3107 3108 3109
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3110
    """
3111

3112 3113 3114
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3125 3126 3127 3128 3129 3130
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3131
        super().__init__(
3132 3133 3134 3135 3136 3137
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3138 3139 3140 3141 3142
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3143 3144
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3145 3146 3147 3148 3149 3150

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3151 3152
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3153 3154

        avg_squared_grad_acc = self._get_accumulator(
3155 3156
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3157
        avg_squared_update_acc = self._get_accumulator(
3158 3159
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3160

3161
        if framework.in_dygraph_mode():
3162 3163 3164 3165 3166 3167 3168 3169
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3170
        elif framework._in_legacy_dygraph():
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
            _legacy_C_ops.adadelta(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                param_and_grad[0],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                "epsilon",
                self._epsilon,
                "rho",
                self._rho,
            )
3184 3185
        else:
            # Create the adadelta optimizer op
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3202

3203
            return adadelta_op
3204 3205


Q
qingqing01 已提交
3206
class RMSPropOptimizer(Optimizer):
3207
    r"""
Q
qingqing01 已提交
3208 3209 3210 3211 3212 3213 3214 3215
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3216
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3217 3218 3219 3220

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3221
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3222 3223 3224 3225 3226 3227

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3228
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3244 3245 3246 3247
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3248
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3249 3250 3251 3252 3253
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3254 3255 3256
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3257
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3258
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3259
        momentum(float): :math:`\\beta` in equation is the momentum term,
3260
            default is 0.0.
3261 3262 3263 3264
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3265
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3266 3267
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3268 3269 3270 3271 3272
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3273 3274 3275
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3276
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3277 3278
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3279 3280 3281 3282 3283 3284 3285

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3286 3287 3288 3289
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3290
            paddle.enable_static()
3291 3292 3293 3294 3295 3296
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
3297
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3298
                avg_cost = paddle.mean(cost)
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3312 3313 3314 3315
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3316
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3317

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3330
        super().__init__(
3331 3332 3333 3334 3335 3336
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3350
        self._centered = centered
Q
qingqing01 已提交
3351 3352 3353 3354 3355 3356 3357 3358

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3359
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3360 3361 3362 3363 3364

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3365 3366 3367 3368 3369 3370 3371 3372 3373
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3374
        if in_dygraph_mode():
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3387 3388
            return None
        elif _in_legacy_dygraph():
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
            _legacy_C_ops.rmsprop(
                param_and_grad[0],
                mean_square_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[1],
                momentum_acc,
                param_and_grad[0],
                momentum_acc,
                mean_square_acc,
                mean_grad_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._rho,
                "momentum",
                self._momentum,
                "centered",
                self._centered,
            )
C
caozhou 已提交
3408
            return None
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3424
                    "MeanGradOut": mean_grad_acc,
3425 3426 3427 3428 3429
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3430
                    "centered": self._centered,
3431
                },
3432 3433
                stop_gradient=True,
            )
Q
qingqing01 已提交
3434

3435
            return rmsprop_op
Q
qingqing01 已提交
3436 3437


Q
qiaolongfei 已提交
3438
class FtrlOptimizer(Optimizer):
3439
    r"""
Q
qiaolongfei 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3478 3479 3480 3481 3482
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3483
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3484 3485
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3486 3487 3488 3489 3490
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3491 3492 3493
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3494
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3495 3496
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3497 3498 3499 3500 3501 3502 3503

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3504 3505 3506 3507
            import paddle
            import paddle.fluid as fluid
            import numpy as np

3508 3509
            paddle.enable_static()

3510 3511 3512 3513 3514 3515
            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
3516
                cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
3517
                avg_cost = paddle.mean(cost)
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3530

3531
    NOTE:
C
chengduo 已提交
3532
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3533 3534 3535 3536 3537
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3549
        super().__init__(
3550 3551 3552 3553 3554 3555
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3576 3577 3578 3579 3580 3581
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
J
Jiabin Yang 已提交
3582
        if framework._non_static_mode():
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3599 3600

        else:
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3622

3623
            return ftrl_op
Q
qiaolongfei 已提交
3624 3625


Y
Yibing Liu 已提交
3626
class LambOptimizer(AdamOptimizer):
3627
    r"""
Y
Yibing Liu 已提交
3628 3629
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3630 3631 3632
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3633
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3634 3635 3636 3637 3638

    The updating of parameters follows:

    ..  math::

3639
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3640

Y
Yibing Liu 已提交
3641
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3642

3643 3644 3645 3646
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3647
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3648

Y
Yibing Liu 已提交
3649
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3650 3651


3652
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3653 3654 3655
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3656 3657 3658 3659 3660 3661 3662 3663
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3664
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3665 3666
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3667 3668 3669 3670 3671
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3672 3673
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3674 3675 3676
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3677 3678
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3679
            Default None.
3680
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3681
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3682 3683 3684

    Examples:
        .. code-block:: python
3685

2
201716010711 已提交
3686
            import paddle
3687
            import paddle.fluid as fluid
2
201716010711 已提交
3688
            paddle.enable_static()
Y
Yibing Liu 已提交
3689

Y
Yibing Liu 已提交
3690
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3691
            hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
3692
            cost = paddle.mean(hidden)
Y
Yibing Liu 已提交
3693

Y
Yibing Liu 已提交
3694 3695 3696 3697 3698
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3699 3700 3701 3702 3703 3704 3705
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3719 3720 3721 3722 3723
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3724
        super().__init__(
3725 3726 3727 3728 3729 3730 3731 3732 3733
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3734 3735
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3736
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3737 3738 3739

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3740
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3741

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3759 3760 3761
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3762
        lr = self._create_param_lr(param_and_grad)
3763
        master_weight = None
J
Jiabin Yang 已提交
3764
        if framework._non_static_mode():
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3789
            return None
Y
Yibing Liu 已提交
3790

Y
Yibing Liu 已提交
3791
        # create the lamb optimize op
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3818 3819 3820 3821

        return lamb_op


3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3835
Dpsgd = DpsgdOptimizer
3836
DecayedAdagrad = DecayedAdagradOptimizer
3837
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3838
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3839
Ftrl = FtrlOptimizer
3840
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3841
Lamb = LambOptimizer
3842 3843 3844


class ModelAverage(Optimizer):
3845
    r"""
3846
	:api_attr: Static Graph
S
swtkiwi 已提交
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3866

3867 3868 3869 3870 3871 3872 3873 3874 3875
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3876 3877

    Args:
3878 3879 3880
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3881 3882 3883 3884 3885
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3886 3887 3888
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3889

3890
    Examples:
Q
qiaolongfei 已提交
3891 3892 3893

      .. code-block:: python

2
201716010711 已提交
3894
        import paddle
3895 3896
        import paddle.fluid as fluid
        import numpy
2
201716010711 已提交
3897
        paddle.enable_static()
3898 3899 3900 3901

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3902

3903 3904 3905 3906
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3907
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3908
            hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
3909
            loss = paddle.mean(hidden)
3910 3911 3912 3913 3914 3915
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3916
                                                         max_average_window=12500)
3917 3918

            exe.run(startup_program)
3919 3920 3921 3922 3923
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3924 3925

            # apply ModelAverage
3926
            with model_average.apply(exe):
3927 3928 3929 3930
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3931 3932
    """

3933 3934 3935 3936 3937 3938 3939 3940
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
J
Jiabin Yang 已提交
3941
        if framework._non_static_mode():
Z
zhongpu 已提交
3942
            raise Exception("In dygraph, don't support ModelAverage.")
3943
        super().__init__(0.0, regularization=regularization, name=name)
3944 3945 3946
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3947

3948
        self.params_grads = []
3949 3950 3951
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
3952
            if param.do_model_average != False:
3953
                grad = param.block.create_var(
3954 3955 3956
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
3957 3958
                    dtype=param.dtype,
                    persistable=False,
3959 3960
                    stop_gradient=True,
                )
3961
                self.params_grads.append((param, grad))
3962

3963
        for param, grad in self.params_grads:
3964 3965
            if grad is None:
                continue
X
Xin Pan 已提交
3966
            with param.block.program._optimized_guard(
3967 3968
                [param, grad]
            ), name_scope('move_average'):
3969
                self._append_average_accumulate_op(param)
3970

3971 3972 3973 3974
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3975
                self._add_average_apply_op(block, param_grad)
3976 3977 3978 3979 3980

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3981
                self._add_average_restore_op(block, param_grad)
3982

3983
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3984 3985 3986 3987 3988 3989
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3990 3991
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
3992
        old_num_accumulates = block._clone_variable(
3993 3994
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
3995
        num_updates = block._clone_variable(
3996 3997
            self._get_accumulator('num_updates', param)
        )
3998 3999 4000
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
4001 4002
        tmp = paddle.add_n([num_accumulates, old_num_accumulates])
        sum = paddle.add_n([sum_1, sum_2, sum_3])
D
dzhwinter 已提交
4003
        tmp = layers.cast(
4004
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4005
        )
D
dzhwinter 已提交
4006
        sum = layers.cast(
4007
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4008
        )
4009
        paddle.assign(paddle.divide(sum, tmp), output=param)
4010 4011

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4012 4013
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4014 4015 4016 4017 4018 4019 4020
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4057

S
rename  
sneaxiy 已提交
4058
    @signature_safe_contextmanager
4059
    def apply(self, executor, need_restore=True):
4060 4061
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4062 4063

        Args:
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4075 4076
            import paddle
            paddle.enable_static()
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
4088
                loss = paddle.mean(hidden)
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4110
        """
4111 4112 4113 4114 4115 4116
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4117 4118

    def restore(self, executor):
4119 4120
        """
        Restore ``Parameter`` values of current model.
4121

4122
        Args:
4123 4124 4125 4126 4127 4128 4129 4130
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy
2
201716010711 已提交
4131 4132
            import paddle
            paddle.enable_static()
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
2
201716010711 已提交
4144
                loss = paddle.mean(hidden)
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4169
        """
4170
        executor.run(self.restore_program)
4171 4172


4173
class ExponentialMovingAverage:
4174
    r"""
4175
        :api_attr: Static Graph
S
swtkiwi 已提交
4176

4177 4178 4179 4180 4181 4182
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4183
        \\text{EMA}_0 & = 0
4184

4185
        \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t
4186

4187 4188 4189
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4190
    the **restore()** method is used to restore the parameters.
4191

4192 4193 4194 4195
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4196 4197

    ..  math::
4198

4199 4200
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4201 4202
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4203
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4204
    allows users to pass a Variable to schedule the decay rate, in this case,
4205
    the actual decay rate becomes
4206

4207
    ..  math::
4208

4209 4210 4211
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4212 4213 4214


    Args:
4215 4216 4217
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4218 4219 4220 4221


    Examples:

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4250
                    feed={'x': data},
4251 4252 4253 4254 4255 4256
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4257
                        feed={'x': data},
4258 4259 4260 4261 4262 4263
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4264
                        feed={'x': data},
4265 4266 4267
                        fetch_list=[hidden.name])
                ema.restore(exe)

4268 4269
    """

4270
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4271
        if framework._non_static_mode():
Z
zhongpu 已提交
4272
            raise Exception(
4273 4274
                "In dygraph, don't support ExponentialMovingAverage."
            )
4275
        self._decay = decay
4276
        self._thres_steps = thres_steps
4277
        self._name = name if name is not None else ''
4278 4279
        self._decay_var = self._get_ema_decay()

4280
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4281
        self._params_tmps = []
4282
        for param in default_main_program().global_block().all_parameters():
4283
            if param.do_model_average != False:
4284 4285 4286 4287 4288 4289 4290 4291
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4292
                self._params_tmps.append((param, tmp))
4293

Y
Yibing Liu 已提交
4294 4295
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4296 4297 4298
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4299
                self._ema_vars[param.name] = self._create_ema_vars(param)
4300 4301 4302 4303

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4304
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4305
            for param, tmp in self._params_tmps:
4306 4307
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4308
                ema = block._clone_variable(self._ema_vars[param.name])
4309
                layers.assign(input=param, output=tmp)
4310
                # bias correction
4311 4312
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4313 4314 4315
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4316 4317
                    with switch.default():
                        layers.assign(output=param, input=ema)
4318 4319 4320 4321

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4322
            for param, tmp in self._params_tmps:
4323 4324 4325 4326
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4327 4328 4329 4330 4331 4332 4333
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4334 4335
                name="scheduled_ema_decay_rate",
            )
4336 4337 4338 4339 4340 4341 4342 4343

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4344 4345
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4346 4347 4348
        return decay_var

    def _get_decay_pow(self, block):
4349 4350 4351 4352 4353 4354 4355
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4356
        global_step = layers.cast(global_step, "float32")
4357
        decay_var = block._clone_variable(self._decay_var)
4358
        decay_pow_acc = paddle.pow(decay_var, global_step)
4359
        return decay_pow_acc, global_step
4360

Y
Yibing Liu 已提交
4361
    def _create_ema_vars(self, param):
4362 4363 4364 4365 4366
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4367 4368
            persistable=True,
        )
4369 4370 4371

        return param_ema

Y
Yibing Liu 已提交
4372
    def update(self):
4373 4374
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4375 4376
        train program.
        """
4377
        global_step = layers.autoincreased_step_counter(
4378 4379
            counter_name=self._step_counter_name
        )
4380
        param_master_emas = []
Y
Yibing Liu 已提交
4381
        for param, tmp in self._params_tmps:
4382 4383 4384
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4385
                param_ema = self._ema_vars[param.name]
4386
                if param.name + '.master' in self._ema_vars:
4387 4388 4389 4390
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4391 4392
                        1 - self._decay_var
                    )
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4403 4404 4405
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4406

4407 4408 4409 4410
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4411

4412 4413
        Args:
            executor (Executor): The Executor to execute applying.
4414
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4415
                applying. Default True.
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4426

4427 4428 4429 4430
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4431 4432


4433
class PipelineOptimizer:
4434
    """
4435
        :api_attr: Static Graph
S
swtkiwi 已提交
4436

4437 4438 4439 4440
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4441

4442
    Args:
4443 4444 4445
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4446

4447 4448
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4449

4450
            import paddle.fluid as fluid
H
hutuxian 已提交
4451 4452
            import paddle.fluid.layers as layers

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4469
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4470
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4471
            optimizer.minimize(loss)
4472 4473 4474 4475 4476 4477 4478 4479 4480

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4481 4482
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4483 4484
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4485
            exe.train_from_dataset(
4486
                    fluid.default_main_program())
4487
            data_loader.reset()
4488 4489
    """

4490
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4491 4492 4493 4494 4495
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4496
        if framework._non_static_mode():
Z
zhongpu 已提交
4497
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4498 4499 4500 4501 4502
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
            paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
        )
4503
        if not isinstance(optimizer, valid_optimizers):
4504 4505 4506 4507 4508 4509 4510
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4511
        self._optimizer = optimizer
4512 4513 4514 4515 4516 4517

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4518 4519 4520
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4521
        self._num_microbatches = num_microbatches
4522 4523 4524
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4525
        self._start_cpu_core_id = start_cpu_core_id
4526 4527 4528 4529 4530 4531
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4532
        self._param_device_map = None
4533 4534
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4535 4536
        self.output_var_to_op = None
        self.input_var_to_op = None
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4566 4567 4568 4569
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4570 4571
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4572 4573 4574
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4575
                'ring_id': self.global_ring_id,
4576
                self._op_role_key: self._op_role.Optimize,
4577 4578 4579
                'use_calc_stream': True,
            },
        )
4580 4581
        offset += 1
        if op.type == "reduce_any":
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4593
            offset += 1
4594
        return offset
H
hutuxian 已提交
4595

4596
    def _create_vars(self, block, ori_block):
4597
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4598
        used_var_set = set()
4599 4600 4601 4602 4603 4604 4605 4606 4607
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4608
            # For op process vars on all devices, remove its input
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4634 4635 4636 4637 4638 4639 4640 4641
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4642
            for var in vars:
4643 4644
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4645
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4646 4647
                    continue
                used_var_set.add(var)
4648 4649
                if block._find_var_recursive(str(var)):
                    continue
4650
                source_var = ori_block._var_recursive(str(var))
4651
                if source_var.type == core.VarDesc.VarType.READER:
4652
                    dest_var = block.create_var(
4653 4654
                        name=var,
                        type=core.VarDesc.VarType.READER,
4655 4656
                        persistable=source_var.persistable,
                    )
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4668 4669
                        error_clip=source_var.error_clip,
                    )
4670
                else:
4671
                    dest_var = block._clone_variable(source_var, False)
4672
                self._clone_var_attr(dest_var, source_var)
4673 4674 4675
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4676 4677
            if self.use_sharding or not should_insert:
                continue
4678 4679 4680 4681
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4682

4683
    def _is_loss_grad_op(self, op):
4684 4685
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4686
        return op_role & int(self._op_role.Backward) and op_role & int(
4687 4688
            self._op_role.Loss
        )
4689

4690
    def _is_forward_op(self, op):
4691 4692 4693
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4694

4695
    def _is_backward_op(self, op):
4696
        return self._op_role_key in op.attr_names and (
4697 4698
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4699 4700 4701 4702

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4703 4704

    def _is_optimize_op(self, op):
4705
        return self._op_role_key in op.attr_names and (
4706 4707
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4708 4709

    def _is_update_op(self, op):
4710 4711 4712 4713 4714
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4715

4716
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4717
        """
4718
        Split a program into sections according to devices that ops run on.
4719
        The op whose op_device attr is "gpu:all" is copied to all sections.
4720 4721 4722

        Args:
            main_program (Program): the main program
4723
            devices: all used devices
H
hutuxian 已提交
4724
        """
4725
        # Map from device to its corresponding section program info
4726
        device_program_map = defaultdict(Program)
4727

4728
        block = main_program.block(0)
4729 4730
        for op in block.ops:
            device = op.attr(self._op_device_key)
4731
            # Copy ops whose op_device set to "gpu:all" to all sections.
4732
            if device == f"{self._device}:all":
4733
                for device in devices:
4734 4735
                    program = device_program_map[device]
                    op_desc = op.desc
4736
                    ap_op = program.global_block().desc.append_op()
4737
                    ap_op.copy_from(op_desc)
4738
                    ap_op._set_attr(self._op_device_key, "")
4739 4740 4741
            else:
                program = device_program_map[device]
                op_desc = op.desc
4742
                ap_op = program.global_block().desc.append_op()
4743
                ap_op.copy_from(op_desc)
4744
                ap_op._set_attr(self._op_device_key, "")
4745

4746
        program_list = []
4747
        for key in devices:
4748
            program = device_program_map[key]
4749 4750
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4751

4752
        return program_list
H
hutuxian 已提交
4753

4754 4755 4756 4757 4758 4759 4760
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4761 4762
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4763
            'or beta2_pow_acc.'
4764 4765
        )
        param_name = var_name[0 : var_name.index('_beta')]
4766 4767 4768
        device = self._param_device_map[param_name]
        return device

4769 4770
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4771 4772 4773
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4774 4775
            if device == "cpu":
                assert op.type == "fill_constant", (
4776
                    "For ops in startup program with the op_device attribute "
4777 4778
                    "of cpu, they must be of type fill_constant."
                )
4779 4780 4781
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4782
            if device:
4783
                device_index = int(device.split(':')[1])
4784
            else:
4785 4786
                # LR related ops
                device = None
4787 4788
            if device and device_index != device_id:
                continue
4789
            op_desc = op.desc
4790
            ap_op = new_startup_program.global_block().desc.append_op()
4791 4792 4793
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4794
        self._create_vars(new_startup_program.global_block(), block)
4795 4796
        return new_startup_program

4797
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4798
        """
4799
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4800
        """
4801 4802 4803 4804 4805 4806
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4807
        post_ops = self.input_var_to_op[var_name]
4808
        if post_ops is None:
4809
            return None
4810 4811 4812 4813 4814 4815
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4816

4817
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4818
        """
4819 4820
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4821
        """
4822
        prev_ops = self.output_var_to_op[var_name]
4823
        if prev_ops is None:
4824
            return None
4825 4826 4827 4828
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4829
                break
4830
        return result_op
4831 4832

    def _rename_arg(self, op, old_name, new_name):
4833 4834
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4835

4836
    def _create_var(self, block, ref_var, name, dtype=None):
4837 4838 4839 4840 4841 4842 4843 4844
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4845
            dtype=ref_var.dtype if dtype is None else dtype,
4846 4847
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4848 4849
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4850 4851
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4852
        self._clone_var_attr(new_var, ref_var)
4853 4854
        return new_var

4855 4856 4857 4858 4859
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4860 4861 4862 4863 4864 4865
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4866

4867 4868 4869 4870 4871 4872
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4873
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4874
        """
4875
        Get the op_device attribute of a op.
H
hutuxian 已提交
4876
        """
4877 4878 4879 4880 4881
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4882
        if device:
4883 4884
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4885
                "supported in pipeline parallemism."
4886
            )
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4900
            op._set_attr(self._op_device_key, f"{self._device}:all")
4901 4902 4903 4904
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4905 4906 4907
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4908 4909 4910 4911
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4912 4913 4914 4915
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4916 4917 4918
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4919 4920 4921
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4922
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4923 4924
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4925
            # for checkpoint offloading
4926 4927 4928
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4929 4930 4931
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4932
                post_op = self._find_post_op(idx, output_name)
4933 4934 4935
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4936
            else:
4937
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4938 4939 4940
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
4941 4942 4943
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4944 4945 4946
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
4947 4948 4949 4950 4951 4952 4953 4954 4955
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4956
            param_name = self._strip_grad_suffix(grad_name[0])
4957 4958 4959 4960 4961
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
4962 4963
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
4964
                "and regularization ops must have op_role_var attribute."
4965
            )
4966
            op_role_var = op.attr(self._op_role_var_key)
4967 4968
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
4969
                "regularization ops must have two elements."
4970
            )
4971 4972
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4973
            # For sum op added by global gradient clip, it must be
4974
            # put on all devices
4975 4976 4977 4978 4979 4980 4981
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
4982
                device = f"{self._device}:all"
4983
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4984
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4985
            op._set_attr(self._op_device_key, f"{self._device}:all")
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4996 4997
        else:
            other_known_ops = [
4998 4999 5000 5001 5002 5003
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5004
            ]
5005 5006 5007
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5008
                "is {}".format(other_known_ops, op.type)
5009
            )
5010
            assert self._is_optimize_op(op)
5011
            op._set_attr(self._op_device_key, f"{self._device}:all")
5012 5013

    def _add_op_device_attr(self, block):
5014
        """
5015
        Add op_device attrribute for ops in block that have
5016
        not that attribute set.
5017
        """
5018
        for idx, op in enumerate(list(block.ops)):
5019 5020 5021 5022 5023
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5024
                # Copy read related ops to all section to make them exit
5025 5026 5027 5028
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5029
                op._set_attr(self._op_device_key, f"{self._device}:all")
5030 5031
                continue
            # op_device attribute has been set
5032 5033
            if self._get_op_device_attr(op):
                continue
5034
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5035

5036 5037
    def _check_validation(self, block):
        """
5038
        Check whether ops in a block have both the op_device and the
5039 5040
        op_role attributes set.
        Then, return all devices in order.
5041
        """
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5052
        for op in block.ops:
5053
            if not op._has_kernel(op.type):
5054 5055 5056 5057 5058 5059
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5060
            assert op.has_attr(
5061 5062
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5063
            op_role = op.attr(self._op_role_key)
5064 5065 5066 5067 5068
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5069

5070
            assert op.has_attr(
5071 5072 5073 5074
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5075 5076

            device = op.attr(self._op_device_key)
5077 5078 5079 5080 5081 5082 5083
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5084

5085
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5086 5087
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5088 5089
                "for pipeline parallelism."
            )
5090 5091

            if device not in device_list:
5092
                device_list.append(device)
5093

5094
        return device_list
5095

5096
    def _insert_sendrecv_ops_for_boundaries(self, block):
5097
        """
5098
        Insert a pair of send and recv ops for every two
5099 5100
        consecutive ops on different devices.
        """
5101
        # A map from var to device where op takes it as input,
5102
        # avoiding multiple send and recv ops.
5103
        input_var_to_device = dict()
5104 5105 5106 5107 5108 5109 5110 5111
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5112
            'first_optimize_index': first_optimize_index,
5113
        }
5114

5115
        for index, op in enumerate(list(block.ops)):
5116
            cur_device = op.attr(self._op_device_key)
5117 5118
            if cur_device == f"{self._device}:all":
                continue
5119 5120
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5121
                # skip data var
5122 5123
                if var.is_data:
                    continue
5124
                prev_device = None
5125 5126 5127

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5128 5129
                    if var_name not in self._param_device_map:
                        continue
5130
                    prev_device = self._param_device_map[var_name]
5131

5132
                if not prev_device:
5133 5134 5135
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5136

5137 5138
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5139

5140 5141
                if prev_device == cur_device:
                    continue
5142

5143 5144 5145 5146 5147 5148 5149
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5150 5151 5152 5153
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5154 5155
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5156
                        'please check the op_role of op={}'.format(op)
5157
                    )
5158 5159

                    if is_forward:
5160 5161
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5162
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5163 5164 5165
                                prev_id, cur_id, op
                            )
                        )
5166
                    elif is_backward:
5167 5168
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5169
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5170 5171 5172
                                prev_id, cur_id, op
                            )
                        )
5173

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5184 5185
                            (cur_dev, prev_dev)
                        )
5186 5187 5188 5189 5190
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5191 5192
                            (cur_dev, prev_dev)
                        )
5193 5194 5195 5196 5197 5198
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5199
                    var = block.vars[var_name]
5200 5201 5202
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5203 5204 5205 5206 5207 5208 5209
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5210

5211
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5212
                        block._insert_op_without_sync(
5213
                            index=index + extra_index_info['index'],
5214 5215 5216
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5217
                                self._op_device_key: prev_dev,
5218 5219 5220
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5221 5222 5223
                                'ring_id': ring_id,
                            },
                        )
5224
                        extra_index_info['index'] += 1
5225
                        var_shape = list(var.shape)
5226 5227 5228 5229 5230
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5231
                        block._insert_op_without_sync(
5232
                            index=index + extra_index_info['index'],
5233 5234 5235
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5236
                                'out_shape': var_shape,
5237
                                'dtype': var.dtype,
5238
                                self._op_device_key: cur_dev,
5239 5240 5241
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5242 5243 5244
                                'ring_id': ring_id,
                            },
                        )
5245
                        extra_index_info['index'] += 1
5246
                    elif self.schedule_mode == '1F1B':  # 1F1B
5247
                        var_shape = list(var.shape)
5248 5249 5250 5251 5252
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5253

5254
                        numel = np.prod(var_shape)
5255 5256 5257
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5280 5281
                                },
                            )
5282 5283 5284
                            extra_index_info['index'] += 1
                            return

5285 5286
                        _check_stage(cur_id, prev_id)

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5297
                        extra_index_info['index'] += 1
5298 5299
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5300 5301 5302
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5303
                        block._insert_op_without_sync(
5304
                            index=index + extra_index_info['index'],
5305
                            type='send_v2'
5306 5307
                            if not use_mp or is_param
                            else 'partial_send',
5308 5309
                            inputs={'X': var},
                            attrs={
5310
                                self._op_device_key: prev_dev,
5311 5312 5313 5314
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5315 5316 5317
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5318 5319
                            },
                        )
5320
                        extra_index_info['index'] += 1
5321 5322 5323
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5324 5325
                                'first_optimize_index'
                            ]
5326 5327 5328 5329
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5330
                        sync_comm_op = block._insert_op_without_sync(
5331
                            index=insert_index + extra_index_info['index'],
5332 5333 5334 5335
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5336
                                self._op_device_key: prev_dev,
5337
                                self._op_role_key: new_op_role,
5338
                                'ring_id': ring_id,
5339 5340
                            },
                        )
5341
                        if int(op_role) == int(self._op_role.Forward):
5342
                            sync_comm_op._set_attr('pipeline_flag', '')
5343
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5344
                        block._insert_op_without_sync(
5345
                            index=index + extra_index_info['index'],
5346
                            type='recv_v2'
5347 5348
                            if not use_mp or is_param
                            else 'partial_recv',
5349 5350 5351 5352
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5353
                                self._op_device_key: cur_dev,
5354 5355 5356
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5357 5358 5359 5360
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5361 5362
                            },
                        )
5363
                        extra_index_info['index'] += 1
5364
                        if use_mp and not is_param:
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5378 5379
                                },
                            )
5380
                            extra_index_info['index'] += 1
5381 5382 5383
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5384 5385
                            "The given value is {}.".format(self.schedule_mode)
                        )
5386

5387 5388 5389 5390
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5391 5392
        block._sync_with_cpp()

5393
    def _insert_loss_scale(self, block):
5394
        """
5395
        Scale the loss corresponding to number of micro-batches.
5396
        """
5397 5398
        if self._num_microbatches == 1:
            return
5399
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5400
            if self._is_loss_grad_op(op):
5401 5402
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5403
                    "but this op is {}".format(op.type)
5404
                )
5405 5406 5407 5408
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5409 5410
                break

5411 5412
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5413 5414
            if not self._is_optimize_op(op):
                continue
5415 5416 5417
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5418 5419
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5420 5421 5422
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5423 5424
                if not core.grad_var_suffix() in name:
                    continue
5425 5426 5427 5428
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5429 5430 5431
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5432 5433 5434 5435
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5436 5437
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5438
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5439 5440
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5441 5442
            return fused_gradient_names

5443 5444 5445
        merged_gradient_names = []
        first_opt_op_idx = None

5446 5447 5448
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5449 5450 5451 5452 5453 5454 5455 5456
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5457
                    continue
5458

5459
            if self._is_backward_op(op) and first_opt_op_idx is None:
5460
                first_opt_op_idx = index + 1
5461 5462
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5463

5464 5465 5466
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5467
                op_role_var = op.attr(self._op_role_var_key)
5468 5469
                if len(op_role_var) == 0:
                    continue
5470 5471
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5472 5473
                    offset = 0
                    param_name = op_role_var[i]
5474 5475 5476 5477
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5478

5479
                    param_grad_name = param_name + core.grad_var_suffix()
5480
                    merged_param_grad_name = param_grad_name + merged_suffix
5481
                    if not block.has_var(merged_param_grad_name):
5482 5483 5484 5485 5486 5487
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5488
                    assert block.has_var(merged_param_grad_name)
5489

5490 5491 5492
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5493
                    block._insert_op(
5494 5495 5496 5497
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5498
                        attrs={
5499 5500 5501
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5502
                            # a trick to run this op once per mini-batch
5503 5504 5505
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5506
                    offset += 1
5507 5508
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5509 5510

                    is_fp16_grad = 'cast_fp16' in grad_name
5511
                    need_cast = is_fp16_grad is not fp16_allreduce
5512 5513 5514 5515 5516 5517

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5518
                        cast_grad_var_name = param_grad_name + '@TMP'
5519
                        cast_grad_var = self._create_var(
5520 5521
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5522
                        cast_grad_var.persistable = False
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5534
                        offset += 1
5535 5536 5537 5538 5539 5540 5541
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5542 5543
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5544 5545
                        },
                    )
5546 5547 5548
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5549 5550
        if not fp16_allreduce:
            return merged_gradient_names
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5585

5586
        return merged_gradient_names
5587

5588 5589 5590
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5591
        grad_param_pairs = self._sort_grad_param_by_dtype(
5592 5593
            main_block, grad_param_pairs
        )
5594

5595 5596 5597
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5598
        cur_size = 0.0
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5609 5610
                stop_gradient=False,
            )
5611
            real_param = main_block.var(param)
5612 5613
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5614 5615 5616 5617
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5618 5619 5620 5621 5622
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5623
                grad_param_segments.append(
5624 5625
                    ([real_grad], [real_param], [merged_grad_var])
                )
5626
                last_dtype = real_grad.dtype
5627
                cur_size = 0.0
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5640 5641 5642 5643 5644 5645
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5646
            # keep the '.cast_fp16' info in the fuse var name
5647 5648 5649 5650 5651 5652 5653 5654 5655
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5656 5657 5658 5659
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5660 5661
                stop_gradient=False,
            )
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5687
                outputs={"Output": grads, "FusedOutput": fused_grad},
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5704 5705 5706 5707 5708 5709 5710
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5711 5712
                },
            )
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5723
                    "FusedOutput": fused_merged_grad,
5724 5725 5726 5727 5728 5729 5730 5731
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5732 5733 5734
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5735 5736 5737 5738 5739 5740 5741 5742 5743
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5744
            need_cast = is_fp16_grad is not fp16
5745 5746 5747 5748
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5766 5767 5768 5769 5770 5771 5772
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5773 5774
                attrs={self._op_role_key: self._op_role.Backward},
            )
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5803 5804 5805 5806 5807 5808
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5809
        return fused_merged_gradients, first_opt_op_idx
5810

5811 5812 5813
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5833 5834 5835
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5847 5848
                        (op_role_var[i + 1], op_role_var[i])
                    )
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5862 5863 5864 5865 5866 5867
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5868 5869 5870 5871
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5872

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5903 5904 5905 5906 5907 5908
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5909

5910 5911
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5912
        for prog in program_list:
5913 5914 5915 5916 5917 5918
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5919 5920
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5921 5922 5923
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5924
                self._create_vars(new_sub_block, origin_sub_block)
5925
                op._set_attr('sub_block', new_sub_block)
5926 5927 5928

    def _get_device_info(self, block):
        for op in block.ops:
5929 5930
            if not op._has_kernel(op.type):
                continue
5931 5932 5933
            op_device = op.attr(self._op_device_key)
            return op_device

5934 5935 5936
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
5937 5938 5939 5940 5941 5942 5943
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5944
        for prog in program_list:
5945 5946
            block = prog.block(0)
            for var_name in block.vars:
5947 5948
                if var_name == "double_buffer_0":
                    continue
5949
                var = block.var(var_name)
5950 5951
                if not var.persistable:
                    continue
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5967 5968 5969 5970 5971 5972
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
5973
                        continue
5974 5975
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
5976 5977
                        self._op_role.Optimize.LRSched
                    ):
5978 5979 5980 5981
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
5982 5983
                            "op {}.".format(var_name, op)
                        )
5984 5985 5986 5987 5988
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
5989 5990
            if not var_name in write_info:
                continue
5991 5992 5993 5994 5995

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5996
            write_dev_index = int(write_device.split(':')[1])
5997 5998
            all_progs = var_info[var_name]
            for prog in all_progs:
5999 6000
                if prog == write_prog:
                    continue
6001 6002 6003
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6004 6005 6006 6007 6008 6009 6010 6011 6012
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6013 6014 6015

                write_block._insert_op(
                    index=0,
6016
                    type='send_v2',
6017 6018 6019
                    inputs={
                        'X': write_block.var(var_name),
                    },
6020
                    attrs={
6021 6022
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6023 6024
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6025 6026 6027 6028 6029
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6030 6031
                read_block._insert_op(
                    index=0,
6032
                    type='recv_v2',
6033 6034
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6035 6036 6037 6038
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6039 6040
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6041 6042 6043 6044 6045
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6046 6047 6048 6049 6050 6051
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6052
                        self._op_device_key: read_device,
6053 6054
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6055 6056 6057 6058
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6059 6060

    def _is_gradient_clip_op(self, op):
6061 6062 6063
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6064 6065

    def _is_regularization_op(self, op):
6066 6067 6068
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6069

6070 6071
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6072 6073 6074
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6075

6076 6077 6078 6079 6080
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6081
        output_var_to_op = defaultdict(list)
6082
        # A map from var to op which takes it as input.
6083
        input_var_to_op = defaultdict(list)
6084

6085
        for index, op in enumerate(block.ops):
6086
            for var_name in op.input_arg_names:
6087
                input_var_to_op[var_name].append([op, index])
6088
            for var_name in op.output_arg_names:
6089 6090 6091 6092 6093 6094 6095 6096
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6097 6098
        if self.schedule_mode != '1F1B':
            return
6099 6100 6101

        block = program.block(0)

6102
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6103 6104
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6105
            if op.type == recv_type and self._is_backward_op(op):
6106 6107 6108
                backward_recv_index = index
                break

6109
        # last pipeline stage
6110 6111
        if backward_recv_index is None:
            return
6112 6113 6114

        offset = 0
        for index, op in enumerate(list(block.ops)):
6115 6116
            if index >= backward_recv_index:
                break
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6133 6134
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6135
        block._sync_with_cpp()
6136

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6150 6151 6152 6153
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6154
                backward_insert_index = i
6155 6156 6157 6158 6159 6160
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6180 6181 6182 6183 6184 6185 6186
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6187 6188 6189 6190 6191 6192 6193
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6221 6222
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6223

6224 6225 6226
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6227
        main_block = loss.block
6228
        self.origin_main_block = main_block
6229
        main_program = main_block.program
6230 6231
        if startup_program is None:
            startup_program = default_startup_program()
6232

6233 6234
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6235 6236 6237 6238 6239 6240 6241
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6242 6243
            'mp_degree',
            'mp_rank',
6244 6245
        ]
        for key in required_keys:
6246 6247 6248
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6249 6250 6251 6252 6253 6254 6255 6256
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6257
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6258 6259
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6260 6261

        optimize_ops, params_grads = self._optimizer.minimize(
6262 6263
            loss, startup_program, parameter_list, no_grad_set
        )
6264
        self._param_device_map = self._origin_optimizer._param_device_map
6265

6266 6267 6268 6269
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6270 6271 6272
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6284 6285 6286
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6287 6288
            "another in the order of their ids."
        )
6289
        # Step2: add send and recv ops between section boundaries
6290
        self._insert_sendrecv_ops_for_boundaries(main_block)
6291

6292
        # Step3: split program into sections and add pairs of
6293 6294
        # send and recv ops for data var.
        main_program = main_block.program
6295
        program_list = self._split_program(main_program, device_list)
6296
        for p in program_list:
6297
            self._create_vars(p.global_block(), main_block)
6298

L
lilong12 已提交
6299 6300 6301 6302 6303
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6304 6305
                "stages."
            )
L
lilong12 已提交
6306 6307
        else:
            self.local_rank %= len(device_list)
6308 6309 6310
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6311
        # Step4: Special Case: process persistable vars that exist in
6312
        # multiple sections
6313
        # FIXME
6314 6315
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6316

6317
        # Step5: Add sub blocks for section programs
6318 6319
        self._add_sub_blocks(main_block, program_list)

6320
        place_list = []
6321 6322
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6323 6324 6325 6326
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6327

6328
        # Step6: Split startup program
6329
        new_startup_program = self._split_startup_program(
6330 6331
            startup_program, self.local_rank
        )
6332 6333 6334 6335

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6336
        real_block = program_list[self.local_rank].global_block()
6337 6338
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6339
        if not self.use_sharding:
6340
            # Step7: clear gradients before each mini-batch and
6341 6342 6343 6344 6345
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6346

6347 6348 6349 6350
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6351 6352 6353
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6354 6355 6356 6357 6358

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6359
        main_program._pipeline_opt = {
H
hutuxian 已提交
6360 6361
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6362
            "pipeline_stage": self.local_rank,
6363
            "num_pipeline_stages": len(device_list),
6364
            "schedule_mode": self.schedule_mode,
6365
            "inner_parallelism": len(device_list),
6366 6367
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6368
            "place_id": place_id,
6369
            "sync_steps": -1,
L
lilong12 已提交
6370
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6371 6372
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6373 6374 6375 6376 6377 6378 6379
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6380 6381


M
mapingshuo 已提交
6382 6383
class RecomputeOptimizer(Optimizer):
    """
6384
        :api_attr: Static Graph
S
swtkiwi 已提交
6385

M
mapingshuo 已提交
6386 6387 6388
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6389
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6390 6391 6392
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6393
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6394 6395 6396
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6397
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6398 6399
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6400

M
mapingshuo 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6446
        if framework._non_static_mode():
Z
zhongpu 已提交
6447
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6448 6449
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6450 6451
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6452
        self.enable_offload = False
M
mapingshuo 已提交
6453 6454

    def _set_checkpoints(self, checkpoints):
6455 6456
        """
        Args:
6457
            checkpoints (list): List of Variable or string
6458 6459 6460 6461 6462
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6463 6464
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6465
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6466 6467
        self._checkpoints = checkpoints

6468
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6469 6470 6471
    def _enable_offload(self):
        self.enable_offload = True

6472 6473
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6474
        """
6475
            :api_attr: Static Graph
S
swtkiwi 已提交
6476

M
mapingshuo 已提交
6477 6478 6479 6480
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6481
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6482 6483 6484 6485

        Examples:
            .. code-block:: python

6486
                import paddle
M
mapingshuo 已提交
6487
                import paddle.fluid as fluid
6488

6489
                paddle.enable_static()
M
mapingshuo 已提交
6490 6491 6492 6493 6494 6495
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6496

M
mapingshuo 已提交
6497 6498 6499 6500
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6501

M
mapingshuo 已提交
6502 6503 6504 6505
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6506 6507
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6508
                except NotImplementedError as e:
6509
                    print(e)
M
mapingshuo 已提交
6510 6511
        """
        raise NotImplementedError(
6512 6513
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6546
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6547 6548 6549 6550
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6551
                    no_grad_set=None)
M
mapingshuo 已提交
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6571 6572
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6573 6574 6575 6576 6577 6578

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6579 6580
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6581 6582 6583 6584 6585 6586 6587 6588

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6589 6590 6591
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6618 6619 6620

        return

6621 6622 6623
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6624 6625 6626 6627 6628 6629 6630 6631
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6632 6633
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6634 6635

    def _insert_fetch_op(self, idx, varname):
6636 6637 6638 6639 6640
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6641 6642 6643

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6644
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6645 6646

    def _insert_offload_op(self, idx, varname):
6647 6648 6649 6650 6651
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6652
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6653
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6654 6655

    def _insert_sync_op(self, op_idx, checkpoint_name):
6656
        # single stream offload no need sync
J
JZ-LIANG 已提交
6657 6658 6659
        pass

    def _record_fetch_op(self, idx):
6660 6661 6662
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6663 6664 6665 6666 6667 6668 6669 6670
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6671 6672 6673 6674 6675
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6676 6677 6678 6679
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6680 6681 6682
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6683 6684 6685 6686 6687 6688 6689
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6690
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6705 6706
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6707 6708 6709

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6710 6711
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6712 6713
        last_last_fetch_checkpoint = None

6714
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6715 6716 6717 6718 6719 6720 6721 6722 6723
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6724 6725 6726
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6727
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6728
                            if input_var != self.sorted_checkpoint_names[0]:
6729 6730 6731
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6732

6733
                        # should check the current used checkpoint is ths last fetch one
6734 6735 6736 6737 6738
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6739 6740 6741
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6742 6743
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6744 6745 6746 6747
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6748 6749 6750
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6751

6752 6753 6754 6755 6756
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6767
                    logging.debug(
6768 6769
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6770 6771 6772 6773 6774
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6775 6776 6777 6778 6779
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6780 6781 6782 6783

    def _parse_forward(self):

        self.idx2insertions = {}
6784
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6785 6786 6787 6788 6789 6790 6791
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6792
                'idx': -1,
J
JZ-LIANG 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6802 6803
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6804 6805
        last_offload_checkpoint = None

6806
        for i, op in enumerate(
6807 6808
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6809 6810 6811 6812 6813 6814 6815

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6816 6817 6818 6819 6820
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6821 6822 6823

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6824
                        if last_offload_checkpoint is not None:
6825 6826 6827 6828 6829 6830 6831 6832 6833
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6834
                            else:
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6848 6849 6850 6851 6852
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6853 6854 6855 6856
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6857 6858
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6872
                    # sync if last checkpoint has not been sync
6873 6874 6875 6876 6877 6878
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6879 6880 6881
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6892
            # record checkpoint usage
J
JZ-LIANG 已提交
6893 6894
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6895 6896 6897
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6898 6899 6900
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6901 6902 6903 6904 6905
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6906 6907 6908
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6909 6910
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6911 6912 6913 6914 6915

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6916 6917
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6918 6919 6920 6921
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6922
                    logging.debug(
6923 6924
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6925 6926 6927
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6928
                    logging.debug(
6929 6930
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6931 6932 6933
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
6934 6935 6936 6937 6938
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6939 6940 6941 6942 6943 6944 6945 6946

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
6947
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
6948 6949 6950 6951 6952 6953
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
6954
        if startup_program is None:
J
JZ-LIANG 已提交
6955
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6956 6957

        with program_guard(self._main_program, startup_program):
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
6968 6969 6970 6971
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
6972 6973
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
6974
                self.checkpoint_name2pinned_name[
6975 6976
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
6977
                self.checkpoint_name2fetch_name[
6978 6979
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

6993 6994 6995 6996 6997 6998 6999 7000
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7001 7002 7003 7004 7005 7006 7007
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7008 7009
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7010 7011 7012 7013 7014 7015 7016 7017
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
7018

M
mapingshuo 已提交
7019 7020 7021 7022 7023 7024
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
7025 7026


M
mapingshuo 已提交
7027 7028 7029 7030
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7031

M
mapingshuo 已提交
7032 7033
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7034
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7035 7036 7037 7038
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7039
                    no_grad_set=None)
M
mapingshuo 已提交
7040 7041
                print("Finished backward")
        """
7042 7043 7044
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7045

J
Jiabin Yang 已提交
7046
        if framework._non_static_mode():
M
mapingshuo 已提交
7047
            raise NotImplementedError(
7048 7049
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7050 7051 7052 7053

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7054 7055 7056 7057 7058 7059 7060
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7061 7062 7063 7064 7065 7066
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7067 7068
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7069
            else:
7070 7071 7072 7073 7074 7075
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7076 7077 7078 7079 7080

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
7094

M
mapingshuo 已提交
7095 7096 7097 7098 7099
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
7100 7101
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7102 7103 7104 7105
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7106

M
mapingshuo 已提交
7107 7108
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7109
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7110 7111 7112 7113
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7114
                    no_grad_set=None)
7115

M
mapingshuo 已提交
7116 7117
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7118

M
mapingshuo 已提交
7119 7120 7121
                print("Finished apply_optimize")
        """

7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7134
        assert isinstance(loss, Variable), "The loss should be an Variable."
7135 7136 7137
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
7138
        if framework._non_static_mode():
M
mapingshuo 已提交
7139
            raise NotImplementedError(
7140 7141 7142 7143 7144 7145 7146 7147
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7148

7149 7150 7151
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7152 7153 7154 7155

        return optimize_ops, params_grads


7156
class LookaheadOptimizer:
7157
    r"""
7158
        :api_attr: Static Graph
S
swtkiwi 已提交
7159

M
mapingshuo 已提交
7160 7161 7162 7163
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7164 7165
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7166 7167 7168
    every k training steps as follows:

    .. math::
7169

M
mapingshuo 已提交
7170
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7171

7172
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7173 7174

    Args:
7175
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7185
            import numpy.random as random
M
mapingshuo 已提交
7186

7187
            paddle.enable_static()
7188

7189 7190 7191 7192
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
7193
            loss = paddle.mean(x=loss)
7194 7195 7196 7197 7198 7199 7200 7201 7202
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7203

7204 7205 7206
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7207

7208 7209
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7210

7211 7212 7213
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7214 7215 7216 7217 7218

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
7219
        if framework._non_static_mode():
Z
zhongpu 已提交
7220
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7221
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7222 7223 7224
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7225
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7236 7237
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7249 7250 7251 7252 7253 7254 7255
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7256 7257 7258 7259 7260 7261
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7262 7263 7264 7265 7266 7267 7268
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7269

7270 7271 7272
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7273

7274 7275
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7276 7277 7278 7279 7280 7281 7282
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7283

7284
            # Add Var alpha to main prog and startup prog
7285 7286 7287 7288 7289 7290 7291
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7292

7293
            # Add Var step
7294 7295 7296 7297 7298 7299 7300
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7301 7302 7303
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
7304 7305 7306
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7307

7308 7309 7310
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7311

7312
            mod = paddle.remainder(step, k)
7313
            with layers.control_flow.Switch() as switch:
7314 7315 7316 7317 7318
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7319 7320 7321 7322
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
7323 7324 7325 7326
                        tmp_var = paddle.add(
                            paddle.multiply(fast_var, alpha),
                            paddle.multiply(
                                slow_var, paddle.subtract(one_var, alpha)
7327 7328
                            ),
                        )
7329 7330 7331 7332
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7333
        return mini_out
7334 7335


7336
class GradientMergeOptimizer:
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7391 7392
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7393
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7394
        if framework._non_static_mode():
7395 7396 7397
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7398 7399
                "and one-time optimizer.minimize()"
            )
7400

7401 7402 7403 7404
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7405 7406 7407 7408 7409

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7410
        self._optimize_ops = None
7411

7412 7413 7414 7415 7416 7417
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7418 7419 7420 7421 7422 7423 7424 7425
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7426 7427 7428 7429 7430 7431 7432 7433 7434
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7435 7436
            loss, startup_program=startup_program
        )
7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7448 7449 7450
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7451 7452 7453 7454 7455 7456
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7457 7458 7459 7460 7461
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7462 7463 7464

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7518 7519

        # Add step var & cond var
7520 7521 7522 7523 7524 7525 7526 7527
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7528

7529 7530 7531
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7532 7533 7534 7535

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7536 7537 7538 7539 7540 7541
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7542 7543

            # cond_var = (step_var == 0)
7544 7545 7546 7547 7548
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7559

7560
        # TODO(mapingshuo) support sparse embedding
7561 7562
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7563
            assert (
7564
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7565 7566
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7567
            self._remove_op_role_var(param, grad)
7568

7569
        param_to_grad = {k.name: v for (k, v) in params_grads}
7570 7571 7572
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7573 7574 7575 7576 7577
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7578
            param_var = main_block.var(param_name)
7579 7580 7581 7582 7583 7584 7585
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7586
            param_to_gradient_merge[param_name] = gradient_merge_var
7587

7588 7589 7590 7591
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7603

7604 7605 7606
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7607
                inputs={'X': grad, 'Y': gradient_merge_var},
7608
                outputs={'Out': gradient_merge_var},
7609 7610 7611 7612 7613
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7614 7615 7616 7617 7618 7619 7620 7621
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7622
            op_maker = core.op_proto_and_checker_maker
7623 7624 7625 7626

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7640

7641 7642 7643 7644 7645 7646
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7647

7648
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7649 7650
                new_params_grads
            )
7651

7652 7653
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7654 7655 7656 7657 7658 7659 7660 7661 7662
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7663 7664 7665 7666 7667 7668

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

7669 7670 7671
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7672 7673
        assert isinstance(loss, Variable), "The loss should be an Variable."

7674 7675 7676 7677 7678 7679
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7680

7681 7682 7683
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7684 7685

        return optimize_ops, params_grads