group_norm_op.cc 10.4 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/group_norm_op.h"
L
liuwei1031 已提交
16
#include <memory>
17
#include <string>
L
liuwei1031 已提交
18
#include <unordered_map>
19
#include <vector>
D
Dun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class GroupNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
33 34 35 36 37 38
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "GroupNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Variance"), "Output", "Variance",
                   "GroupNorm");

D
Dun 已提交
39
    auto x_dim = ctx->GetInputDim("X");
40 41 42 43 44 45 46
    PADDLE_ENFORCE_GE(
        x_dim.size(), 2,
        platform::errors::InvalidArgument(
            "The Input(X)'s dimension of Op(group_norm) must be "
            "greater than 1. But received: %u-D Tensor, which shape is [%s].",
            x_dim.size(), x_dim));

47 48 49 50
    const std::string data_layout_str =
        ctx->Attrs().Get<std::string>("data_layout");
    const framework::DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
51 52
    const int64_t channel_num =
        (data_layout == DataLayout::kNCHW ? x_dim[1] : x_dim[x_dim.size() - 1]);
D
Dun 已提交
53 54 55 56
    auto batch_size = x_dim[0];
    auto groups = ctx->Attrs().Get<int>("groups");
    PADDLE_ENFORCE_LE(
        groups, channel_num,
57 58 59 60 61 62
        platform::errors::InvalidArgument(
            "The Attr(groups) of Op(group_norm) must be less than or "
            "equal to the number of channels. But received: groups "
            "is [%s], channels is [%s], the Attr(data_layout) "
            "is [%s]. The error may come from wrong data_layout setting.",
            groups, channel_num, data_layout_str));
63 64
    PADDLE_ENFORCE_GE(
        groups, 1,
65 66 67 68
        platform::errors::InvalidArgument(
            "The Attr(groups) of Op(group_norm) must be "
            "greater than or equal to 1. But received: groups is [%s].",
            groups));
D
Dun 已提交
69 70

    if (ctx->HasInput("Scale")) {
71 72
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale").size(), 1UL,
73 74 75 76
          platform::errors::InvalidArgument(
              "The Input(Scale) of Op(group_norm) should be 1-D Tensor. "
              "But received: %u-D Tensor, the shape of Input(Scale) is [%s].",
              ctx->GetInputDim("Scale").size(), ctx->GetInputDim("Scale")));
77 78
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Scale")[0], channel_num,
79 80 81 82 83 84 85
          platform::errors::InvalidArgument(
              "The Input(Scale)'s first dimension size of Op(group_norm) must "
              "be equal to the number of channels. But received: the "
              "Input(Scale)'s first dimension size is [%s], the channels is "
              "[%s], the Attr(data_layout) is [%s]. The error may come "
              "from wrong data_layout setting.",
              ctx->GetInputDim("Scale")[0], channel_num, data_layout_str));
D
Dun 已提交
86 87
    }
    if (ctx->HasInput("Bias")) {
88 89
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias").size(), 1UL,
90 91 92 93
          platform::errors::InvalidArgument(
              "The Input(Bias) of Op(group_norm) should be 1-D Tensor. "
              "But received: %u-D Tensor, the shape of Input(Bias) is [%s].",
              ctx->GetInputDim("Bias").size(), ctx->GetInputDim("Bias")));
94 95
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Bias")[0], channel_num,
96 97 98 99 100 101 102
          platform::errors::InvalidArgument(
              "The Input(Bias)'s first dimension size of "
              "Op(group_norm) must be equal to the number of channels. "
              "But received: the Input(Bias)'s first dimension size is [%s], "
              "the channels is [%s], the Attr(data_layout) is [%s]. The "
              "error may come from wrong data_layout setting.",
              ctx->GetInputDim("Bias")[0], channel_num, data_layout_str));
D
Dun 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    }

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {batch_size, groups});
    ctx->SetOutputDim("Variance", {batch_size, groups});
    ctx->ShareLoD("X", "Y");
  }
};

class GroupNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C"
             "that is applied to the output.")
        .AsDispensable();
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of each group.").AsIntermediate();
    AddOutput("Variance", "Variance of each group.").AsIntermediate();

    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
132 133 134 135 136
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(GroupNorm) should be between"
                                "0.0 and 1.0f, But received [%s].",
                                epsilon));
D
Dun 已提交
137 138 139
        });
    AddAttr<int>("groups", "The number of groups that divided from channels.")
        .AddCustomChecker([](const int &groups) {
140 141 142 143 144 145
          PADDLE_ENFORCE_GT(
              groups, 0,
              platform::errors::InvalidArgument(
                  "'groups' in Op(GroupNorm) should be greater than zero,"
                  "But received [%s].",
                  groups));
D
Dun 已提交
146
        });
147 148 149
    AddAttr<std::string>("data_layout",
                         "An optional string from: \"NHWC\", \"NCHW\". ")
        .SetDefault("NCHW");
D
Dun 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163
    AddComment(R"DOC(
Group Normalization

Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC");
  }
};

class GroupNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
164 165 166 167 168
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "GroupNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Variance"), "Input", "Variance",
                   "GroupNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "GroupNormGrad");
D
Dun 已提交
169 170 171

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
172
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
D
Dun 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
188 189 190 191

    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument(
                 "Input(Y@GRAD) of GroupNormGradOp should not be null"));
D
Dun 已提交
192 193 194 195 196 197
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
198 199 200
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::InvalidArgument(
               "Input(Y@GRAD) Tensor of GroupNormGradOp should not be null"));
Y
Yu Yang 已提交
201
    return framework::OpKernelType(t->type(), ctx.GetPlace());
D
Dun 已提交
202 203 204
  }
};

H
hong 已提交
205 206
template <typename T>
class GroupNormGradMaker : public framework::SingleGradOpMaker<T> {
207
 public:
H
hong 已提交
208
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
209

210
  void Apply(GradOpPtr<T> op) const override {
211
    op->SetType("group_norm_grad");
H
hong 已提交
212 213 214 215 216
    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetInput("Y", this->Output("Y"));
    op->SetInput("Variance", this->Output("Variance"));
217

H
hong 已提交
218 219 220
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
221

H
hong 已提交
222
    op->SetAttrMap(this->Attrs());
223 224 225
  }
};

226 227
DECLARE_INPLACE_OP_INFERER(GroupNormInplaceInferer, {"X", "Y"});
DECLARE_INPLACE_OP_INFERER(GroupNormGradInplaceInferer,
228 229
                           {framework::GradVarName("Y"),
                            framework::GradVarName("X")});
D
Dun 已提交
230 231 232 233

class GroupNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
234
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
D
Dun 已提交
235
      const override {
236 237
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
    return m;
D
Dun 已提交
238 239 240
  }
};

D
Dun 已提交
241 242 243 244 245
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(group_norm, ops::GroupNormOp, ops::GroupNormOpMaker,
H
hong 已提交
246 247 248
                  ops::GroupNormOpInferVarType,
                  ops::GroupNormGradMaker<paddle::framework::OpDesc>,
                  ops::GroupNormGradMaker<paddle::imperative::OpBase>,
249
                  ops::GroupNormInplaceInferer);
D
Dun 已提交
250
REGISTER_OPERATOR(group_norm_grad, ops::GroupNormGradOp,
251
                  ops::GroupNormGradInplaceInferer);
D
Dun 已提交
252 253 254 255 256 257 258
REGISTER_OP_CPU_KERNEL(
    group_norm, ops::GroupNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, double>);