data_transform.cc 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_transform.h"
16

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/data_device_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_type_transform.h"
Q
Qiao Longfei 已提交
20

21
#ifdef PADDLE_WITH_MKLDNN
22
#include <algorithm>
23 24 25
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
Qiao Longfei 已提交
26 27 28
namespace paddle {
namespace framework {

Y
yuyang18 已提交
29
static void PassTensorData(Tensor *from, Tensor *to) {
30 31 32 33
  to->ShareDataWith(*from);
  *from = Tensor();
}

Y
yuyang18 已提交
34 35 36
void TransformData(const OpKernelType &expected_kernel_type,
                   const OpKernelType &kernel_type_for_var,
                   const Tensor &input_tensor, Tensor *output_tensor) {
37 38 39 40
  bool transformed = false;
  Tensor in;
  in.ShareDataWith(input_tensor);
  Tensor out;
M
mozga-intel 已提交
41 42
  DataLayout lin = kernel_type_for_var.data_layout_;
  DataLayout lout = expected_kernel_type.data_layout_;
43 44

  // do layout transform
M
mozga-intel 已提交
45
  if (NeedTransformLayout(lout, lin)) {
46
#ifdef PADDLE_WITH_MKLDNN
M
mozga-intel 已提交
47 48 49 50 51 52 53 54
    if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
      PADDLE_ENFORCE(
          !(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
          "No layout transform needed between two MKLDNN OPKernels");

      if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
        // Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
        // Just set layout/format. No real transform occur
55

56 57 58
        auto out_format = platform::MKLDNNFormatForSize(in.dims().size(),
                                                        ToMKLDNNFormat(lin));
        out.ShareDataWith(input_tensor);
59 60
        // For NHWC data we need reshape of tensors as MKL-DNN
        // is expecting NHWC dims description order
61
        platform::MatchShapeToLayout(&out, lin, lout);
62 63
        paddle::platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
            lin);
64 65
        out.set_layout(DataLayout::kMKLDNN);
        out.set_format(out_format);
M
mozga-intel 已提交
66 67 68 69 70 71 72 73 74 75
      } else {
        // Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
        // Do transform via MKLDNN lib
        TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
                                  &out);
      }
    } else {
      // Case3 - transfrom between Non-MKLDNN OPKernels
      TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
    }
76 77 78 79
#else
    // Case3 - transfrom between Non-MKLDNN OPKernels
    TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
#endif
80 81 82 83
    transformed = true;
    PassTensorData(&out, &in);
  }

84
  // do data type transform
Q
Qiao Longfei 已提交
85 86 87 88 89 90
  if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
    TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
    transformed = true;
    PassTensorData(&out, &in);
  }

91
  // do device transform
92 93
  if (!platform::is_same_place(kernel_type_for_var.place_,
                               expected_kernel_type.place_)) {
Q
Qiao Longfei 已提交
94
    TransDataDevice(in, expected_kernel_type.place_, &out);
95 96
    transformed = true;
    PassTensorData(&out, &in);
97
  }
98

Q
Qiao Longfei 已提交
99
  PADDLE_ENFORCE(transformed, "No transform is applied, please check!");
100 101
  // get output data
  output_tensor->ShareDataWith(in);
102 103
}

Y
yuyang18 已提交
104 105
void SetTensorToVariable(const Variable &in_var, const Tensor &tensor,
                         Variable *out_var) {
106
  if (in_var.IsType<LoDTensor>()) {
Y
yuyang18 已提交
107 108
    auto &in_lod_tensor = in_var.Get<LoDTensor>();
    auto *tran_lod_tensor = out_var->GetMutable<LoDTensor>();
109 110 111 112
    tran_lod_tensor->set_lod(in_lod_tensor.lod());
    tran_lod_tensor->set_layout(in_lod_tensor.layout());
    tran_lod_tensor->ShareDataWith(tensor);
  } else if (in_var.IsType<SelectedRows>()) {
Y
yuyang18 已提交
113 114
    auto &in_selected_rows = in_var.Get<SelectedRows>();
    auto *trans_selected_rows = out_var->GetMutable<SelectedRows>();
115 116 117 118 119 120 121 122
    trans_selected_rows->set_height(in_selected_rows.height());
    trans_selected_rows->set_rows(in_selected_rows.rows());
    trans_selected_rows->mutable_value()->ShareDataWith(tensor);
  } else {
    PADDLE_THROW("unknown var type");
  }
}

Q
Qiao Longfei 已提交
123 124
}  // namespace framework
}  // namespace paddle