optimizer.py 301.2 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40 41 42 43 44 45 46 47
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from .clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
    ClipGradByGlobalNorm,
)
48 49 50
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
51
from .dygraph import base as imperative_base
52
from .dygraph import no_grad
53 54 55 56
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
57 58 59
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
60
from functools import cmp_to_key
61
from .wrapped_decorator import signature_safe_contextmanager
62
import warnings
63
from paddle import _C_ops, _legacy_C_ops
64 65 66 67 68
from ..fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _current_expected_place,
)
69

70
__all__ = [
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
98
]
Q
Qiao Longfei 已提交
99 100


101
class Optimizer:
Q
Qiao Longfei 已提交
102 103 104
    """Optimizer Base class.

    Define the common interface of an optimizer.
105 106
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
107 108
    """

109
    @imperative_base.no_grad
110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
120 121
        """
        Args:
122 123
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
124 125
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
126
        # Because of the loop import, so place it in the function body
127
        from paddle.optimizer.lr import LRScheduler
128 129 130 131

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
132
        self._name = name
J
Jiabin Yang 已提交
133
        if framework._non_static_mode():
134 135 136
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
137
                raise TypeError(
138
                    "learning rate should be float or LRScheduler, got %s here"
139 140
                    % type(learning_rate)
                )
141
            if self._parameter_list is None:
142 143 144
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
145 146 147 148 149 150
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
151 152
                            % regularization.__str__()
                        )
153
                        break
M
minqiyang 已提交
154
        else:
155 156 157
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
158
                raise TypeError(
159
                    "learning rate should be float or LRScheduler, got %s here"
160 161
                    % type(learning_rate)
                )
M
minqiyang 已提交
162

163 164 165 166 167
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
168
        self.regularization = regularization
169
        self._grad_clip = grad_clip
170
        self._learning_rate = learning_rate
171 172
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
173

D
dzhwinter 已提交
174
        self._dtype = None
L
Leo Chen 已提交
175 176 177 178
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

179
        # each program should have a independent learning rate
180
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
181
        self._learning_rate_map = dict()
182
        if isinstance(self._learning_rate, framework.Variable):
183
            self._learning_rate_map[
184 185
                framework.default_main_program()
            ] = self._learning_rate
186 187 188 189 190
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
191 192
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
193
        self.helper = LayerHelper(self.__class__.__name__)
194
        self._opti_name_list = []
H
hong 已提交
195
        self._accumulators_holder = {}
196
        self._param_device_map = dict()
197 198
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
199
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
200 201
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
202 203 204 205

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
206 207
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
208 209 210

        Args: None
        Return:
T
tianshuo78520a 已提交
211
            state_dict(dict) : dict contains all the variable used by optimizer
212

H
hong 已提交
213 214 215 216
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
217 218 219 220 221 222

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
223 224

        '''
225
        from paddle.optimizer.lr import LRScheduler
226

H
hong 已提交
227 228 229 230
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
231 232
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
233
        # global step if use lr decay
234
        if isinstance(self._learning_rate, LRScheduler):
235 236
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
237
        if isinstance(self._learning_rate, LearningRateDecay):
238 239 240 241
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
242 243 244
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
245

246 247 248
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
249

250
                state_dict['global_step'] = var_temp
H
hong 已提交
251 252 253
        return state_dict

    @framework.dygraph_only
254
    def set_state_dict(self, state_dict):
H
hong 已提交
255
        '''
T
tianshuo78520a 已提交
256
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
257

258
        Args:
H
hong 已提交
259 260 261
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
262

H
hong 已提交
263 264
        Examples:
            .. code-block:: python
265

266 267
                import paddle
                import paddle.fluid as fluid
268 269 270

                paddle.disable_static()

271
                emb = paddle.nn.Embedding(10, 10)
272

273
                state_dict = emb.state_dict()
274
                fluid.save_dygraph(state_dict, "paddle_dy")
275

276
                scheduler = paddle.optimizer.lr.NoamDecay(
277 278 279 280
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
281
                state_dict = adam.state_dict()
282
                fluid.save_dygraph(state_dict, "paddle_dy")
283

284
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
285
        '''
286
        from paddle.optimizer.lr import LRScheduler
287

288
        if isinstance(self._learning_rate, LRScheduler):
289
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
290 291

        if isinstance(self._learning_rate, LearningRateDecay):
292 293 294
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
295 296 297
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
298 299 300 301 302
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
303 304 305 306 307
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
308 309 310

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
311 312 313 314 315
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
316 317 318 319
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
320 321
                        type(global_step),
                    )
H
hong 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
335 336 337
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
338

339 340 341 342 343
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
344

345 346 347 348 349
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
350 351 352

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
353 354 355
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
356 357 358
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
359
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
360

361
        for k, v in self._global_accumulators.items():
362 363 364
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
365
            _load_state_para(state_dict, v)
366

367 368 369
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

370 371
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
372

373 374 375 376 377 378 379 380 381
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
382
    def _create_global_learning_rate(self):
383
        from paddle.optimizer.lr import LRScheduler
384

385
        if isinstance(self._learning_rate, LRScheduler):
386 387 388 389 390 391 392 393 394 395
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
396 397
                    dtype='float32' if self._dtype is None else self._dtype,
                )
398 399 400
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
401
                self._learning_rate_map[
402 403
                    framework.default_main_program()
                ] = lr_var
404 405 406

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
407 408
                lr_var, initializer=Constant(value=lr_value)
            )
409 410
            return

411 412 413
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
414 415 416 417 418
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
419 420 421
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = layers.create_global_var(
M
minqiyang 已提交
422 423 424 425
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
426 427
                        persistable=True,
                    )
428
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
429
            elif isinstance(self._learning_rate, LearningRateDecay):
430
                self._learning_rate_map[
431 432
                    framework.default_main_program()
                ] = self._learning_rate()
433
            else:
Q
qiaolongfei 已提交
434
                raise TypeError(
435 436
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
437
        else:
438 439 440 441
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
442 443 444 445 446 447
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
448

449
            # create learning rate in the current main program
450
            self._learning_rate_map[
451 452 453 454 455 456 457 458
                framework.default_main_program()
            ] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
459

460 461 462 463
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
464

465 466 467 468 469 470 471 472
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
473

474 475 476 477
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
513 514
                % (type(value))
            )
515 516 517 518 519 520 521 522
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
523 524
                if in_dygraph_mode():
                    place = _current_expected_place()
525 526 527 528 529 530 531
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
532 533

                elif _in_legacy_dygraph():
534 535 536 537 538 539 540 541 542
                    _legacy_C_ops.fill_constant(
                        current_lr,
                        'value',
                        float(value),
                        'dtype',
                        current_lr.dtype,
                        'shape',
                        list(current_lr.shape),
                    )
543
                else:
544 545 546 547 548 549 550 551 552 553 554 555 556
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
557
        else:
558 559 560
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
561 562
            self._learning_rate_map[framework.default_main_program()] = value

563 564 565
    @framework.dygraph_only
    def current_step_lr(self):
        """
566
        :api_attr: imperative
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
612
        if isinstance(current_lr, framework.Variable):
613 614 615 616
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
617 618 619
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
620 621 622 623 624 625 626
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
627
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
628 629 630 631
        """
        get global decayed learning rate
        :return:
        """
632 633
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
634
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
635

Q
Qiao Longfei 已提交
636
    def _append_optimize_op(self, block, param_and_grad):
637
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
638 639
        raise NotImplementedError()

640 641 642 643
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
644 645
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
646
        else:
W
Wu Yi 已提交
647
            if param_lr == 1.0:
Y
yuyang18 已提交
648
                return self._global_learning_rate()
W
Wu Yi 已提交
649
            else:
X
Xin Pan 已提交
650
                with default_main_program()._lr_schedule_guard(
651 652
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
653
                    return self._global_learning_rate() * param_lr
654 655 656 657 658 659 660

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
661
        """
662 663
        pass

664
    def _finish_update(self, block, parameters_and_grads):
665 666 667 668 669 670 671 672
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
673
            None
674 675 676
        """
        pass

677 678 679 680 681 682 683 684 685 686
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
687 688 689 690 691 692 693 694 695
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
696 697
        if self._name is not None:
            name = self._name + "_" + name
698 699 700 701
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
702
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
703
                return self._accumulators[name][param.name]
704 705
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
706 707 708
                    name, param.name
                )
            )
709
        if shape is None:
710
            shape = param.shape
Q
Qiao Longfei 已提交
711
        assert isinstance(self.helper, LayerHelper)
712 713 714 715 716

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
717
        var = self.helper.create_global_variable(
718
            name=var_name,
Q
Qiao Longfei 已提交
719
            persistable=True,
F
fengjiayi 已提交
720
            dtype=dtype or param.dtype,
721
            type=core.VarDesc.VarType.LOD_TENSOR
722 723
            if framework._non_static_mode()
            else (param.type if type is None else type),
H
hong 已提交
724
            shape=shape,
725 726
            belong_to_optimizer=True,
        )
727 728 729 730
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
731 732
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
733

J
Jiabin Yang 已提交
734
        if framework._non_static_mode():
H
hong 已提交
735
            if len(self._accumulators_holder) > 0:
736 737 738 739 740
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
741 742
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
743
        self._accumulators[name][param.name] = var
744
        return var
745

746 747 748 749 750 751 752 753 754
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
755 756 757 758 759 760 761 762 763 764 765 766 767
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
768
        if name in self._global_accumulators:
J
Jiabin Yang 已提交
769
            if framework._non_static_mode():
770 771
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
772
        if shape is None:
773 774 775 776 777 778 779 780 781 782 783 784 785
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
786 787
            belong_to_optimizer=True,
        )
788 789 790 791
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
792 793
                var, initializer=Constant(value=float(fill_value))
            )
794

J
Jiabin Yang 已提交
795
        if framework._non_static_mode():
796
            if len(self._accumulators_holder) > 0:
797 798 799 800 801
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
802 803 804 805 806
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

807 808 809 810 811 812 813 814
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
815
            accumulator variable
816
        """
W
whs 已提交
817 818
        if self._name is not None:
            name = self._name + "_" + name
819 820 821 822
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
823 824
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
825 826 827
                    name, param.name
                )
            )
828 829
        return self._accumulators[name][param.name]

830 831 832 833 834 835 836 837 838 839 840
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
841
        if name not in self._global_accumulators:
842 843 844
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

845 846 847 848 849
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
850 851
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
852 853 854 855 856
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
857 858
                            device_attr_name
                        )
859
                        break
860 861 862 863 864 865 866

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

867
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
868 869 870
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
871
          parameters_and_grads(list(tuple(Variable, Variable))):
872
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
873 874

        Returns:
875
          return_op_list: a list of operators that will complete one step of
876 877 878
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
879
        """
880 881 882 883 884
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
885
        # for parameters and extend _finish_update method to add custom ops.
886

887
        # Allways called under program_guard use global block as loss block
888 889 890
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

891
        global_block = framework.default_main_program().global_block()
892 893 894
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
895 896 897
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
898
            target_block = framework.default_main_program().blocks[
899 900
                current_block.backward_block_idx
            ]
901 902

        start = len(target_block.ops)
903

904
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
905
        self._create_accumulators(
906 907
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
908 909
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
910
        if framework._non_static_mode():
911 912 913
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
914 915
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
916 917 918 919 920
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
921 922
                    param_and_grad
                ), name_scope("optimizer"):
923
                    if param_and_grad[0].trainable is True:
924
                        device = self._get_device_for_param(
925 926
                            param_and_grad[0].name
                        )
927 928
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
929 930
                                target_block, param_and_grad
                            )
931 932 933

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
934
        self._finish_update(target_block, parameters_and_grads)
935

936 937
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
938 939

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
940 941 942 943 944 945 946 947 948
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
949 950
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
951 952 953 954 955 956 957 958
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
959 960
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
961 962 963 964 965 966
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
967
            param_and_grad = [table_param, table_grad]
968 969 970
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
971 972 973 974 975 976 977
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
978
                        "LearningRate": self._create_param_lr(param_and_grad),
979
                    },
980 981
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
982 983
        return new_param_grads, (table_param, table_grad), sgd_op

984 985 986 987 988 989 990 991
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
992
        """
993
        The first part of ``minimize``, do auto-diff to append backward operations for
994 995 996
        the current program.

        Args:
997 998 999 1000
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1001
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1002 1003
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1004
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1005 1006 1007
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1008

1009
        Return:
1010 1011
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1012

1013
        Examples:
1014
            See examples in ``apply_gradients``.
1015
        """
1016
        act_no_grad_set = None
J
Jiabin Yang 已提交
1017
        if framework._non_static_mode():
1018
            pass
L
Leo Chen 已提交
1019 1020
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1021

L
Leo Chen 已提交
1022 1023 1024 1025
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1026
        if framework._non_static_mode():
1027 1028 1029
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1030

C
chengduo 已提交
1031
            params_grads = []
1032
            for param in parameter_list:
C
chengduo 已提交
1033 1034
                if not param.trainable:
                    continue
1035
                if param._grad_ivar() is not None:
C
chengduo 已提交
1036
                    # create gradient variable
1037
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1038
                    params_grads.append((param, grad_var))
1039
        else:
C
chengduo 已提交
1040 1041 1042
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1043
                assert isinstance(callbacks, list)
C
chengduo 已提交
1044
            program = loss.block.program
1045 1046
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1047
                "Maybe that you should call paddle.mean to process the current loss.".format(
1048 1049 1050 1051 1052 1053
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1054
            with program_guard(program, startup_program):
1055 1056 1057
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1058
        return params_grads
1059

1060
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1061
        """Create and add backward regularization Operators
1062

1063 1064 1065
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1066
        if grad is None or (
1067 1068 1069 1070 1071 1072
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
1083
        if framework._non_static_mode():
1084
            return _legacy_C_ops.sum([grad, regularization_term])
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1097 1098
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1099 1100 1101

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1102
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1103 1104 1105

        return new_grad

1106 1107 1108
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1109
        r"""Create and add backward regularization Operators
1110

1111 1112 1113 1114
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1115

1116 1117 1118 1119 1120
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1121

1122 1123 1124
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1125

1126 1127 1128 1129
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1130
        if framework._non_static_mode():
1131
            for param, grad in parameters_and_grads:
1132
                new_grad = self._create_regularization_of_grad(
1133 1134
                    param, grad, regularization
                )
1135 1136 1137 1138 1139
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1140 1141 1142 1143 1144
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1145 1146 1147 1148
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1149 1150
                            % regularization.__str__()
                        )
1151 1152
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1153 1154
                            param, grad, regularization
                        )
1155 1156 1157
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1158 1159 1160 1161 1162 1163 1164
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1165 1166 1167 1168
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1169 1170
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1171 1172
                    "the regularizer is set".format(p.name)
                )
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1187 1188
            belong_to_optimizer=True,
        )
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1199 1200
            belong_to_optimizer=True,
        )
1201 1202

        with program_guard(default_main_program()):
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1232

1233
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1234
        # so the shape of flatten_param and flatten_grad will be inferred.
1235 1236 1237 1238 1239 1240
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1241 1242 1243

        return [(flatten_param, flatten_grad)]

1244 1245 1246 1247 1248 1249 1250
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1251

1252 1253
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1254

1255 1256 1257
        Examples:
            .. code-block:: python

1258
                import paddle.fluid as fluid
1259 1260 1261 1262 1263 1264 1265 1266 1267
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1268 1269
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1270
            if self._grad_clip is None or isinstance(
1271 1272
                self._grad_clip, ClipGradByGlobalNorm
            ):
1273 1274
                params_grads = self.flatten_param_grads(params_grads)

1275
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1276 1277 1278 1279
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1280 1281

        # Add regularization if any
1282 1283 1284
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1285 1286 1287 1288

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1301
        if framework._non_static_mode():
1302 1303 1304 1305
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1306 1307
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1308
                params_grads = self.append_regularization_ops(
1309 1310
                    params_grads, self.regularization
                )
C
chengduo 已提交
1311 1312 1313 1314 1315 1316 1317
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1318
    def _get_no_grad_set(self, loss, no_grad_set=None):
1319
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1320 1321
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1322 1323
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1324 1325 1326 1327 1328
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1329 1330 1331 1332
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1333 1334

        If not, new gradient will accumulat on previous gradient.
1335

1336 1337
        Returns:
            None
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
1350
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1362
    @imperative_base.no_grad
1363 1364 1365
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1366
        """
1367
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1368

1369
        Args:
1370 1371 1372 1373
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1374
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1375 1376
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1377
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1378
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1379

1380
        Returns:
1381 1382 1383
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1384 1385
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1386
            ``fetch_list`` before run, see details in ``Executor``.
1387 1388 1389

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1390
        """
C
chengduo 已提交
1391
        assert isinstance(loss, Variable), "The loss should be an Variable."
1392

1393 1394 1395
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1396

1397 1398 1399 1400 1401 1402
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1403

1404 1405 1406
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1407

Q
Qiao Longfei 已提交
1408
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1409 1410 1411


class SGDOptimizer(Optimizer):
1412
    r"""
Q
qiaolongfei 已提交
1413 1414 1415 1416 1417 1418
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1419 1420 1421
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1422
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1423 1424
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1425 1426 1427 1428 1429
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1430 1431 1432
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1433
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1434 1435
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1436 1437 1438 1439

    Examples:
        .. code-block:: python

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1465 1466
    """

1467 1468 1469 1470 1471 1472 1473 1474 1475
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1476
        assert learning_rate is not None
1477
        super().__init__(
1478 1479 1480 1481 1482 1483
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1484
        self.type = "sgd"
1485
        self._use_mkldnn = False
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1497 1498 1499 1500 1501 1502 1503
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1504
            block = self.helper.startup_program.global_block()
1505 1506 1507 1508 1509 1510 1511 1512 1513
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1527 1528 1529 1530
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1531 1532 1533 1534
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1535

1536
    @no_grad
1537
    def _append_optimize_op(self, block, param_and_grad):
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1548

1549
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1550
        if in_dygraph_mode():
1551 1552 1553 1554 1555 1556 1557
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1558 1559
            return None
        if _in_legacy_dygraph():
1560 1561 1562 1563 1564 1565 1566 1567
            _legacy_C_ops.sgd(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                param_and_grad[0],
                master_weight,
            )
1568
            return None
1569

1570
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1571
        # create the optimize op
1572 1573 1574
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
1575
            "LearningRate": lr,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1586 1587 1588 1589 1590 1591 1592
        sgd_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
Q
Qiao Longfei 已提交
1593 1594

        return sgd_op
1595 1596 1597


class MomentumOptimizer(Optimizer):
1598
    r"""
Q
qiaolongfei 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1612
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1613 1614 1615

        & else:

Q
qiaolongfei 已提交
1616
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1617

1618 1619 1620 1621
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1622
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1623 1624
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1625
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1626 1627 1628 1629 1630
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1631 1632 1633
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1634
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1635 1636
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1637 1638 1639 1640

    Examples:
        .. code-block:: python

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1666 1667 1668
    """
    _velocity_acc_str = "velocity"

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1679 1680
        assert learning_rate is not None
        assert momentum is not None
1681
        super().__init__(
1682 1683 1684 1685 1686 1687
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1688 1689
        self.type = "momentum"
        self._momentum = momentum
1690
        self._use_nesterov = bool(use_nesterov)
1691 1692 1693 1694 1695

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1696
            self._add_accumulator(self._velocity_acc_str, p)
1697 1698 1699 1700

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1701 1702 1703
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1704
        lr = self._create_param_lr(param_and_grad)
1705
        master_weight = None
J
Jiabin Yang 已提交
1706
        if framework._non_static_mode():
1707
            _, _, _ = _legacy_C_ops.momentum(
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1721
            return None
1722

1723
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1724 1725 1726 1727
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1728
            "LearningRate": [lr],
1729 1730 1731 1732
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
1733
            "VelocityOut": [velocity_acc],
1734
        }
1735
        # create the momentum optimize op
1736 1737 1738 1739 1740 1741 1742
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1743 1744

        return momentum_op
1745 1746


1747
class LarsMomentumOptimizer(Optimizer):
1748
    r"""
1749 1750 1751 1752 1753 1754 1755 1756 1757
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1758
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1759 1760 1761

        & param = param - velocity

1762 1763 1764 1765 1766 1767
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1768
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1769 1770
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1771 1772 1773 1774 1775
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1776 1777 1778
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1779
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1780 1781
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1782 1783
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
1784 1785 1786
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
1787

1788 1789 1790
    Examples:
        .. code-block:: python

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1807 1808 1809
    """
    _velocity_acc_str = "velocity"

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
1825 1826
        assert learning_rate is not None
        assert momentum is not None
1827
        super().__init__(
1828 1829 1830 1831 1832 1833
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1834 1835 1836 1837
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1838 1839 1840 1841 1842
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1843 1844 1845 1846 1847
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
1848 1849 1850 1851
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
1852

1853 1854
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
1855 1856 1857 1858 1859 1860 1861
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1862
            block = self.helper.startup_program.global_block()
1863 1864 1865 1866 1867 1868 1869 1870 1871
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1872
            self._master_weights[param.name] = var
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
1885 1886 1887 1888 1889 1890
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
1891
        target_name = target_param.name
1892 1893 1894 1895
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
1896 1897
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
1898 1899 1900
                    name, target_name
                )
            )
1901
        return self._accumulators[name][target_name]
1902 1903 1904 1905 1906

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
1907 1908 1909 1910
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
1911 1912 1913 1914
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1915 1916 1917 1918
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
1919 1920 1921 1922
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1923 1924 1925 1926 1927 1928 1929 1930
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1931 1932 1933
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1934 1935
        lr = self._create_param_lr(param_and_grad)

1936 1937 1938 1939 1940 1941 1942 1943 1944
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1945 1946 1947

        attrs = {
            "mu": self._momentum,
1948
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
1949
            "lars_weight_decay": [_lars_weight_decay],
1950
            "multi_precision": find_master,
L
limingshu 已提交
1951
            "epsilon": self._epsilon,
1952
            "rescale_grad": self._rescale_grad,
1953 1954 1955 1956 1957 1958
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
1959
            "LearningRate": lr,
1960 1961 1962 1963 1964 1965 1966 1967
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
1968
        if framework._non_static_mode():
1969
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
1989 1990
        else:
            # create the momentum optimize op
1991 1992 1993 1994 1995 1996 1997
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
1998

1999
            return momentum_op
2000 2001


2002
class AdagradOptimizer(Optimizer):
2003
    r"""
2004 2005
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2006

2007
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2008 2009 2010 2011 2012 2013 2014

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2015 2016 2017 2018 2019 2020
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2021 2022 2023
    for numerical stability to avoid the division by zero error.

    Args:
2024 2025 2026 2027
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2028
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2029 2030
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2031 2032 2033 2034 2035
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2036 2037 2038
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2039
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2040 2041 2042 2043 2044
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2045 2046 2047 2048

    Examples:
        .. code-block:: python

2049
            import numpy as np
2050
            import paddle.fluid as fluid
2051 2052

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2053
            inp = fluid.data(name="inp", shape=[2, 2])
2054 2055
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2056
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2057 2058 2059 2060 2061 2062 2063
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2064 2065 2066
    """
    _moment_acc_str = "moment"

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2077 2078
        assert learning_rate is not None
        assert epsilon is not None
2079
        super().__init__(
2080 2081 2082 2083 2084 2085
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2086 2087
        self.type = "adagrad"
        self._epsilon = epsilon
2088
        self.initial_accumulator_value = initial_accumulator_value
2089 2090 2091 2092 2093

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2094 2095 2096 2097 2098
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2099 2100 2101 2102

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2103 2104 2105
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2106
        if in_dygraph_mode():
2107 2108 2109 2110 2111 2112 2113
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2114 2115
            return None
        elif _in_legacy_dygraph():
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
            _legacy_C_ops.adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
            )
C
caozhou 已提交
2126
            return None
2127 2128 2129 2130 2131 2132 2133 2134
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2135
                    "LearningRate": self._create_param_lr(param_and_grad),
2136 2137 2138
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2139
                    "MomentOut": moment_acc,
2140 2141
                },
                attrs={"epsilon": self._epsilon},
2142 2143
                stop_gradient=True,
            )
2144

2145
            return adagrad_op
2146 2147 2148


class AdamOptimizer(Optimizer):
2149
    r"""
T
tianshuo78520a 已提交
2150
    The Adam optimizer uses an optimization described at the end
2151 2152 2153
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2154

2155
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2170 2171
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2172
    Args:
2173 2174
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2175 2176
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2177
            The default value is 0.9.
2178 2179
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2180
            The default value is 0.999.
2181 2182
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2183
            The default value is 1e-08.
H
hong 已提交
2184
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2185 2186
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2187 2188 2189 2190 2191
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2192 2193 2194
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2195
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2206
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2207
            for whole model instead of creating beta_pow for each parameter. Default is false.
2208 2209
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2210
            use same align_size as allocator.
Q
qiaolongfei 已提交
2211 2212 2213 2214

    Examples:
        .. code-block:: python

2215 2216 2217 2218 2219 2220
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2221 2222
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2256
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2273 2274 2275 2276 2277 2278 2279
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2280 2281 2282 2283 2284 2285 2286

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2287
                    return beta1, beta2, epsilon
2288

2289
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2290 2291
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2292
                                                    beta1=beta1,
2293 2294
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2305 2306 2307
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2308 2309
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2310

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2326 2327 2328 2329
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2330
        super().__init__(
2331 2332 2333 2334 2335 2336 2337 2338
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2339 2340 2341 2342
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2343
        self._lazy_mode = lazy_mode
2344
        self._use_global_beta_pow = use_global_beta_pow
2345 2346 2347 2348 2349 2350

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2351 2352
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2353 2354 2355 2356
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2357 2358 2359
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2360
                    shape=[1],
2361 2362 2363
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2364 2365 2366
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2367 2368 2369
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2370
                    shape=[1],
2371 2372 2373
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2374 2375
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2376
                name=self._beta1_pow_acc_str,
2377 2378 2379
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2380
                shape=[1],
2381 2382 2383
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2384
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2385
                name=self._beta2_pow_acc_str,
2386 2387 2388
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2389
                shape=[1],
2390 2391 2392
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2393 2394 2395 2396

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2397 2398 2399 2400 2401 2402
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2403 2404
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2405 2406
                self._beta1_pow_acc_str
            )
2407
            beta2_pow_acc = self._get_global_accumulator(
2408 2409
                self._beta2_pow_acc_str
            )
2410
        else:
2411 2412 2413 2414 2415 2416
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2417
        lr = self._create_param_lr(param_and_grad)
2418
        # create the adam optimize op
2419

J
Jiabin Yang 已提交
2420
        if framework._non_static_mode():
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2431
            master_weight = None
2432
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2460 2461 2462

            return None

2463
        inputs = {
2464 2465
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2466
            "LearningRate": [lr],
2467 2468 2469
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2470
            "Beta2Pow": [beta2_pow_acc],
2471
        }
2472 2473 2474 2475 2476 2477 2478

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2479
        outputs = {
2480 2481 2482 2483 2484
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2485 2486 2487
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2488
            "min_row_size_to_use_multithread": 1000,
2489
            'use_global_beta_pow': self._use_global_beta_pow,
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2500 2501 2502 2503
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2504

2505 2506 2507 2508 2509 2510 2511
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2512 2513 2514

        return adam_op

2515
    def _finish_update(self, block, parameters_and_grads):
2516
        r"""Update beta1_pow and beta2_pow accumulator"""
2517 2518 2519
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2520 2521
                self._beta1_pow_acc_str
            )
2522
            beta2_pow_acc = self._get_global_accumulator(
2523 2524
                self._beta2_pow_acc_str
            )
2525 2526 2527

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2528
                outputs = {"Out": beta1_pow_acc}
2529 2530
                attrs = {}
                if isinstance(self._beta1, Variable):
2531 2532
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2533 2534 2535 2536 2537 2538 2539
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2540 2541
                else:
                    attrs['scale'] = self._beta1
2542 2543 2544 2545 2546 2547 2548
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2549 2550

                inputs = {"X": beta2_pow_acc}
2551
                outputs = {"Out": beta2_pow_acc}
2552 2553
                attrs = {}
                if isinstance(self._beta2, Variable):
2554 2555
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2556 2557 2558 2559 2560 2561 2562
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2563 2564
                else:
                    attrs['scale'] = self._beta2
2565 2566 2567 2568 2569 2570 2571
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
2572

2573 2574

class AdamaxOptimizer(Optimizer):
2575
    r"""
2576
    The Adamax optimizer is implemented based on the Adamax Optimization
2577 2578 2579
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2580

2581
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2595
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2609
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2610 2611
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2612 2613 2614 2615 2616
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2617 2618 2619
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2620
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2621 2622 2623 2624 2625 2626
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2641
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2642 2643
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2644
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2645 2646 2647 2648 2649 2650 2651 2652 2653
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2654 2655 2656
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2657
    _beta1_pow_acc_str = "beta1_pow_acc"
2658

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2670 2671 2672 2673
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2674
        super().__init__(
2675 2676 2677 2678 2679 2680
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2681 2682 2683 2684 2685 2686 2687 2688
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2689 2690
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2691 2692 2693 2694 2695 2696
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
2697 2698 2699 2700 2701

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
2702 2703 2704 2705 2706 2707
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
2708 2709

        if framework.in_dygraph_mode():
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
2721
        elif framework._in_legacy_dygraph():
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
            _legacy_C_ops.adamax(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                param_and_grad[0],
                moment,
                inf_norm,
                "beta1",
                self._beta1,
                "beta2",
                self._beta2,
                "epsilon",
                self._epsilon,
            )
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
2749
                    "Beta1Pow": beta1_pow_acc,
2750 2751 2752 2753
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
2754
                    "InfNormOut": inf_norm,
2755 2756 2757 2758
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
2759
                    "epsilon": self._epsilon,
2760
                },
2761 2762
                stop_gradient=True,
            )
2763

2764
            return adamax_op
2765

2766
    def _finish_update(self, block, parameters_and_grads):
2767
        """Update Beta1 Power accumulator"""
2768
        assert isinstance(block, framework.Block)
2769
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2770
            if grad is None or param.trainable is False:
2771
                continue
2772 2773 2774 2775 2776 2777
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
J
Jiabin Yang 已提交
2778
                if framework._non_static_mode():
2779
                    if framework.in_dygraph_mode():
2780 2781 2782
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
2783
                    else:
2784 2785 2786
                        tmp = _legacy_C_ops.scale(
                            beta1_pow_acc, "scale", self._beta1
                        )
2787 2788
                    beta1_pow_acc.copy_(tmp, False)
                else:
2789 2790 2791 2792 2793 2794 2795
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
2796 2797


2798
class DpsgdOptimizer(Optimizer):
2799
    r"""
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2836
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2837 2838
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2839 2840 2841 2842
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

2843 2844 2845 2846 2847 2848 2849 2850
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
2851 2852 2853 2854
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2855
        super().__init__(
2856 2857
            learning_rate=learning_rate, parameter_list=parameter_list
        )
2858 2859 2860 2861
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2862 2863 2864 2865 2866 2867 2868
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2869 2870 2871 2872 2873

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
2874
        if self._seed is None:
Z
zhongpu 已提交
2875 2876
            self._seed = 0

J
Jiabin Yang 已提交
2877
        if framework._non_static_mode():
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
2892
        else:
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
2909

2910
            return dpsgd_op
2911 2912


2913
class DecayedAdagradOptimizer(Optimizer):
2914
    r"""
2915 2916 2917
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2918

2919
    The parameter ``param_out`` update rule with gradient ``grad``:
2920 2921 2922 2923 2924 2925 2926

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2927 2928 2929 2930
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2931 2932 2933
    stability to avoid the division by zero error.

    Args:
2934 2935 2936 2937 2938
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2939
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2940 2941
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2942 2943 2944 2945 2946
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2947 2948 2949
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2950
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2951 2952 2953 2954 2955 2956
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2957 2958 2959 2960

    Examples:
        .. code-block:: python

2961 2962
            import paddle.fluid as fluid

2963 2964 2965 2966
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2967
            optimizer.minimize(cost)
2968 2969 2970
    """
    _moment_acc_str = "moment"

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
2981 2982 2983 2984
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

2985
        super().__init__(
2986 2987 2988 2989 2990 2991
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3005 3006 3007
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3008

J
Jiabin Yang 已提交
3009
        if framework._non_static_mode():
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3022 3023 3024 3025 3026 3027 3028 3029
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3030
                    "LearningRate": self._create_param_lr(param_and_grad),
3031 3032 3033
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3034
                    "MomentOut": moment_acc,
3035
                },
3036 3037 3038
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3039

3040
            return decayed_adagrad_op
3041 3042


3043
class AdadeltaOptimizer(Optimizer):
3044
    r"""
Z
Zeng Jinle 已提交
3045
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3046

Z
Zeng Jinle 已提交
3047
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3048 3049 3050
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3051

Z
Zeng Jinle 已提交
3052 3053
    .. math::

Z
Zeng Jinle 已提交
3054
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3055

Z
Zeng Jinle 已提交
3056
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3057

Z
Zeng Jinle 已提交
3058
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3059 3060

    Args:
Z
Zeng Jinle 已提交
3061 3062 3063
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3064
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3065 3066
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3067 3068 3069 3070 3071
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3072 3073 3074
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3075
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3076 3077 3078
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3079 3080 3081 3082

    Examples:
        .. code-block:: python

3083
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3084

3085
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3086 3087
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3088 3089
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3090

Z
Zeng Jinle 已提交
3091 3092 3093 3094
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3095
    """
3096

3097 3098 3099
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3110 3111 3112 3113 3114 3115
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3116
        super().__init__(
3117 3118 3119 3120 3121 3122
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3123 3124 3125 3126 3127
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3128 3129
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3130 3131 3132 3133 3134 3135

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3136 3137
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3138 3139

        avg_squared_grad_acc = self._get_accumulator(
3140 3141
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3142
        avg_squared_update_acc = self._get_accumulator(
3143 3144
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3145

3146
        if framework.in_dygraph_mode():
3147 3148 3149 3150 3151 3152 3153 3154
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3155
        elif framework._in_legacy_dygraph():
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
            _legacy_C_ops.adadelta(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                param_and_grad[0],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                "epsilon",
                self._epsilon,
                "rho",
                self._rho,
            )
3169 3170
        else:
            # Create the adadelta optimizer op
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3187

3188
            return adadelta_op
3189 3190


Q
qingqing01 已提交
3191
class RMSPropOptimizer(Optimizer):
3192
    r"""
Q
qingqing01 已提交
3193 3194 3195 3196 3197 3198 3199 3200
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3201
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3202 3203 3204 3205

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3206
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3207 3208 3209 3210 3211 3212

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3213
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3229 3230 3231 3232
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3233
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3234 3235 3236 3237 3238
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3239 3240 3241
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3242
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3243
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3244
        momentum(float): :math:`\\beta` in equation is the momentum term,
3245
            default is 0.0.
3246 3247 3248 3249
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3250
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3251 3252
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3253 3254 3255 3256 3257
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3258 3259 3260
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3261
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3262 3263
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3264 3265 3266 3267 3268 3269 3270

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3296 3297 3298 3299
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3300
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3314
        super().__init__(
3315 3316 3317 3318 3319 3320
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3334
        self._centered = centered
Q
qingqing01 已提交
3335 3336 3337 3338 3339 3340 3341 3342

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3343
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3344 3345 3346 3347 3348

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3349 3350 3351 3352 3353 3354 3355 3356 3357
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3358
        if in_dygraph_mode():
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3371 3372
            return None
        elif _in_legacy_dygraph():
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
            _legacy_C_ops.rmsprop(
                param_and_grad[0],
                mean_square_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[1],
                momentum_acc,
                param_and_grad[0],
                momentum_acc,
                mean_square_acc,
                mean_grad_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._rho,
                "momentum",
                self._momentum,
                "centered",
                self._centered,
            )
C
caozhou 已提交
3392
            return None
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3408
                    "MeanGradOut": mean_grad_acc,
3409 3410 3411 3412 3413
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3414
                    "centered": self._centered,
3415
                },
3416 3417
                stop_gradient=True,
            )
Q
qingqing01 已提交
3418

3419
            return rmsprop_op
Q
qingqing01 已提交
3420 3421


Q
qiaolongfei 已提交
3422
class FtrlOptimizer(Optimizer):
3423
    r"""
Q
qiaolongfei 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3462 3463 3464 3465 3466
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3467
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3468 3469
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3470 3471 3472 3473 3474
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3475 3476 3477
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3478
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3479 3480
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3481 3482 3483 3484 3485 3486 3487

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3512

3513
    NOTE:
C
chengduo 已提交
3514
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3515 3516 3517 3518 3519
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3531
        super().__init__(
3532 3533 3534 3535 3536 3537
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3558 3559 3560 3561 3562 3563
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
J
Jiabin Yang 已提交
3564
        if framework._non_static_mode():
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
3581 3582

        else:
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
3604

3605
            return ftrl_op
Q
qiaolongfei 已提交
3606 3607


Y
Yibing Liu 已提交
3608
class LambOptimizer(AdamOptimizer):
3609
    r"""
Y
Yibing Liu 已提交
3610 3611
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3612 3613 3614
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3615
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3616 3617 3618 3619 3620

    The updating of parameters follows:

    ..  math::

3621
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3622

Y
Yibing Liu 已提交
3623
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3624

3625 3626 3627 3628
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3629
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3630

Y
Yibing Liu 已提交
3631
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3632 3633


3634
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3635 3636 3637
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3638 3639 3640 3641 3642 3643 3644 3645
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3646
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3647 3648
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3649 3650 3651 3652 3653
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3654 3655
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3656 3657 3658
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3659 3660
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3661
            Default None.
3662
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3663
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3664 3665 3666

    Examples:
        .. code-block:: python
3667 3668

            import paddle.fluid as fluid
Y
Yibing Liu 已提交
3669

Y
Yibing Liu 已提交
3670
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3671 3672 3673
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3674 3675 3676 3677 3678
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3679 3680 3681 3682 3683 3684 3685
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
3699 3700 3701 3702 3703
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3704
        super().__init__(
3705 3706 3707 3708 3709 3710 3711 3712 3713
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
3714 3715
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3716
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3717 3718 3719

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3720
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
3739 3740 3741
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3742
        lr = self._create_param_lr(param_and_grad)
3743
        master_weight = None
J
Jiabin Yang 已提交
3744
        if framework._non_static_mode():
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
3769
            return None
Y
Yibing Liu 已提交
3770

Y
Yibing Liu 已提交
3771
        # create the lamb optimize op
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
3798 3799 3800 3801

        return lamb_op


3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3815
Dpsgd = DpsgdOptimizer
3816
DecayedAdagrad = DecayedAdagradOptimizer
3817
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3818
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3819
Ftrl = FtrlOptimizer
3820
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3821
Lamb = LambOptimizer
3822 3823 3824


class ModelAverage(Optimizer):
3825
    r"""
3826
	:api_attr: Static Graph
S
swtkiwi 已提交
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3856 3857

    Args:
3858 3859 3860
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3861 3862 3863 3864 3865
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3866 3867 3868
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3869

3870
    Examples:
Q
qiaolongfei 已提交
3871 3872 3873

      .. code-block:: python

3874 3875 3876 3877 3878 3879
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3880

3881 3882 3883 3884
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3885
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3886 3887 3888 3889 3890 3891 3892 3893
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3894
                                                         max_average_window=12500)
3895 3896

            exe.run(startup_program)
3897 3898 3899 3900 3901
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3902 3903

            # apply ModelAverage
3904
            with model_average.apply(exe):
3905 3906 3907 3908
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3909 3910
    """

3911 3912 3913 3914 3915 3916 3917 3918
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
J
Jiabin Yang 已提交
3919
        if framework._non_static_mode():
Z
zhongpu 已提交
3920
            raise Exception("In dygraph, don't support ModelAverage.")
3921
        super().__init__(0.0, regularization=regularization, name=name)
3922 3923 3924
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3925

3926
        self.params_grads = []
3927 3928 3929
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
3930
            if param.do_model_average != False:
3931
                grad = param.block.create_var(
3932 3933 3934
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
3935 3936
                    dtype=param.dtype,
                    persistable=False,
3937 3938
                    stop_gradient=True,
                )
3939
                self.params_grads.append((param, grad))
3940

3941
        for param, grad in self.params_grads:
3942 3943
            if grad is None:
                continue
X
Xin Pan 已提交
3944
            with param.block.program._optimized_guard(
3945 3946
                [param, grad]
            ), name_scope('move_average'):
3947
                self._append_average_accumulate_op(param)
3948

3949 3950 3951 3952
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3953
                self._add_average_apply_op(block, param_grad)
3954 3955 3956 3957 3958

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3959
                self._add_average_restore_op(block, param_grad)
3960

3961
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3962 3963 3964 3965 3966 3967
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3968 3969
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
3970
        old_num_accumulates = block._clone_variable(
3971 3972
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
3973
        num_updates = block._clone_variable(
3974 3975
            self._get_accumulator('num_updates', param)
        )
3976 3977 3978 3979 3980
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3981
        tmp = layers.cast(
3982
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
3983
        )
D
dzhwinter 已提交
3984
        sum = layers.cast(
3985
            x=sum, dtype='float32' if self._dtype is None else self._dtype
3986
        )
3987
        paddle.assign(paddle.divide(sum, tmp), output=param)
3988 3989

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3990 3991
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3992 3993 3994 3995 3996 3997 3998
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4035

S
rename  
sneaxiy 已提交
4036
    @signature_safe_contextmanager
4037
    def apply(self, executor, need_restore=True):
4038 4039
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4040 4041

        Args:
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4086
        """
4087 4088 4089 4090 4091 4092
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4093 4094

    def restore(self, executor):
4095 4096
        """
        Restore ``Parameter`` values of current model.
4097

4098
        Args:
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4143
        """
4144
        executor.run(self.restore_program)
4145 4146


4147
class ExponentialMovingAverage:
4148
    r"""
4149
        :api_attr: Static Graph
S
swtkiwi 已提交
4150

4151 4152 4153 4154 4155 4156
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4157
        \\text{EMA}_0 & = 0
4158

4159
        \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t
4160

4161 4162 4163
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4164
    the **restore()** method is used to restore the parameters.
4165

4166 4167 4168 4169
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4170 4171

    ..  math::
4172

4173 4174
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4175 4176
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4177
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4178
    allows users to pass a Variable to schedule the decay rate, in this case,
4179
    the actual decay rate becomes
4180

4181
    ..  math::
4182

4183 4184 4185
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4186 4187 4188


    Args:
4189 4190 4191
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4192 4193 4194 4195


    Examples:

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4224
                    feed={'x': data},
4225 4226 4227 4228 4229 4230
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4231
                        feed={'x': data},
4232 4233 4234 4235 4236 4237
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4238
                        feed={'x': data},
4239 4240 4241
                        fetch_list=[hidden.name])
                ema.restore(exe)

4242 4243
    """

4244
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4245
        if framework._non_static_mode():
Z
zhongpu 已提交
4246
            raise Exception(
4247 4248
                "In dygraph, don't support ExponentialMovingAverage."
            )
4249
        self._decay = decay
4250
        self._thres_steps = thres_steps
4251
        self._name = name if name is not None else ''
4252 4253
        self._decay_var = self._get_ema_decay()

4254
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4255
        self._params_tmps = []
4256
        for param in default_main_program().global_block().all_parameters():
4257
            if param.do_model_average != False:
4258 4259 4260 4261 4262 4263 4264 4265
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4266
                self._params_tmps.append((param, tmp))
4267

Y
Yibing Liu 已提交
4268 4269
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4270 4271 4272
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4273
                self._ema_vars[param.name] = self._create_ema_vars(param)
4274 4275 4276 4277

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4278
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4279
            for param, tmp in self._params_tmps:
4280 4281
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4282
                ema = block._clone_variable(self._ema_vars[param.name])
4283
                layers.assign(input=param, output=tmp)
4284
                # bias correction
4285 4286
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4287 4288 4289
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4290 4291
                    with switch.default():
                        layers.assign(output=param, input=ema)
4292 4293 4294 4295

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4296
            for param, tmp in self._params_tmps:
4297 4298 4299 4300
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4301 4302 4303 4304 4305 4306 4307
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4308 4309
                name="scheduled_ema_decay_rate",
            )
4310 4311 4312 4313 4314 4315 4316 4317

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4318 4319
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4320 4321 4322
        return decay_var

    def _get_decay_pow(self, block):
4323 4324 4325 4326 4327 4328 4329
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4330
        global_step = layers.cast(global_step, "float32")
4331
        decay_var = block._clone_variable(self._decay_var)
4332
        decay_pow_acc = paddle.pow(decay_var, global_step)
4333
        return decay_pow_acc, global_step
4334

Y
Yibing Liu 已提交
4335
    def _create_ema_vars(self, param):
4336 4337 4338 4339 4340
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4341 4342
            persistable=True,
        )
4343 4344 4345

        return param_ema

Y
Yibing Liu 已提交
4346
    def update(self):
4347 4348
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4349 4350
        train program.
        """
4351
        global_step = layers.autoincreased_step_counter(
4352 4353
            counter_name=self._step_counter_name
        )
4354
        param_master_emas = []
Y
Yibing Liu 已提交
4355
        for param, tmp in self._params_tmps:
4356 4357 4358
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4359
                param_ema = self._ema_vars[param.name]
4360
                if param.name + '.master' in self._ema_vars:
4361 4362 4363 4364
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4365 4366
                        1 - self._decay_var
                    )
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4377 4378 4379
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4380

4381 4382 4383 4384
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4385

4386 4387
        Args:
            executor (Executor): The Executor to execute applying.
4388
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4389
                applying. Default True.
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4400

4401 4402 4403 4404
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4405 4406


4407
class PipelineOptimizer:
4408
    """
4409
        :api_attr: Static Graph
S
swtkiwi 已提交
4410

4411 4412 4413 4414
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4415

4416
    Args:
4417 4418 4419
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4420

4421 4422
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4423

4424
            import paddle.fluid as fluid
H
hutuxian 已提交
4425 4426
            import paddle.fluid.layers as layers

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4443
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4444
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4445
            optimizer.minimize(loss)
4446 4447 4448 4449 4450 4451 4452 4453 4454

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4455 4456
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4457 4458
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4459
            exe.train_from_dataset(
4460
                    fluid.default_main_program())
4461
            data_loader.reset()
4462 4463
    """

4464
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4465 4466 4467 4468 4469
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4470
        if framework._non_static_mode():
Z
zhongpu 已提交
4471
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4472 4473 4474 4475 4476
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
            paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
        )
4477
        if not isinstance(optimizer, valid_optimizers):
4478 4479 4480 4481 4482 4483 4484
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4485
        self._optimizer = optimizer
4486 4487 4488 4489 4490 4491

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4492 4493 4494
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4495
        self._num_microbatches = num_microbatches
4496 4497 4498
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4499
        self._start_cpu_core_id = start_cpu_core_id
4500 4501 4502 4503 4504 4505
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4506
        self._param_device_map = None
4507 4508
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4509 4510
        self.output_var_to_op = None
        self.input_var_to_op = None
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4540 4541 4542 4543
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
4544 4545
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
4546 4547 4548
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4549
                'ring_id': self.global_ring_id,
4550
                self._op_role_key: self._op_role.Optimize,
4551 4552 4553
                'use_calc_stream': True,
            },
        )
4554 4555
        offset += 1
        if op.type == "reduce_any":
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
4567
            offset += 1
4568
        return offset
H
hutuxian 已提交
4569

4570
    def _create_vars(self, block, ori_block):
4571
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4572
        used_var_set = set()
4573 4574 4575 4576 4577 4578 4579 4580 4581
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4582
            # For op process vars on all devices, remove its input
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4608 4609 4610 4611 4612 4613 4614 4615
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4616
            for var in vars:
4617 4618
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4619
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4620 4621
                    continue
                used_var_set.add(var)
4622 4623
                if block._find_var_recursive(str(var)):
                    continue
4624
                source_var = ori_block._var_recursive(str(var))
4625
                if source_var.type == core.VarDesc.VarType.READER:
4626
                    dest_var = block.create_var(
4627 4628
                        name=var,
                        type=core.VarDesc.VarType.READER,
4629 4630
                        persistable=source_var.persistable,
                    )
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
4642 4643
                        error_clip=source_var.error_clip,
                    )
4644
                else:
4645
                    dest_var = block._clone_variable(source_var, False)
4646
                self._clone_var_attr(dest_var, source_var)
4647 4648 4649
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
4650 4651
            if self.use_sharding or not should_insert:
                continue
4652 4653 4654 4655
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4656

4657
    def _is_loss_grad_op(self, op):
4658 4659
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4660
        return op_role & int(self._op_role.Backward) and op_role & int(
4661 4662
            self._op_role.Loss
        )
4663

4664
    def _is_forward_op(self, op):
4665 4666 4667
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
4668

4669
    def _is_backward_op(self, op):
4670
        return self._op_role_key in op.attr_names and (
4671 4672
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
4673 4674 4675 4676

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4677 4678

    def _is_optimize_op(self, op):
4679
        return self._op_role_key in op.attr_names and (
4680 4681
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
4682 4683

    def _is_update_op(self, op):
4684 4685 4686 4687 4688
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
4689

4690
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4691
        """
4692
        Split a program into sections according to devices that ops run on.
4693
        The op whose op_device attr is "gpu:all" is copied to all sections.
4694 4695 4696

        Args:
            main_program (Program): the main program
4697
            devices: all used devices
H
hutuxian 已提交
4698
        """
4699
        # Map from device to its corresponding section program info
4700
        device_program_map = defaultdict(Program)
4701

4702
        block = main_program.block(0)
4703 4704
        for op in block.ops:
            device = op.attr(self._op_device_key)
4705
            # Copy ops whose op_device set to "gpu:all" to all sections.
4706
            if device == f"{self._device}:all":
4707
                for device in devices:
4708 4709
                    program = device_program_map[device]
                    op_desc = op.desc
4710
                    ap_op = program.global_block().desc.append_op()
4711
                    ap_op.copy_from(op_desc)
4712
                    ap_op._set_attr(self._op_device_key, "")
4713 4714 4715
            else:
                program = device_program_map[device]
                op_desc = op.desc
4716
                ap_op = program.global_block().desc.append_op()
4717
                ap_op.copy_from(op_desc)
4718
                ap_op._set_attr(self._op_device_key, "")
4719

4720
        program_list = []
4721
        for key in devices:
4722
            program = device_program_map[key]
4723 4724
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4725

4726
        return program_list
H
hutuxian 已提交
4727

4728 4729 4730 4731 4732 4733 4734
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4735 4736
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
4737
            'or beta2_pow_acc.'
4738 4739
        )
        param_name = var_name[0 : var_name.index('_beta')]
4740 4741 4742
        device = self._param_device_map[param_name]
        return device

4743 4744
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4745 4746 4747
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4748 4749
            if device == "cpu":
                assert op.type == "fill_constant", (
4750
                    "For ops in startup program with the op_device attribute "
4751 4752
                    "of cpu, they must be of type fill_constant."
                )
4753 4754 4755
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4756
            if device:
4757
                device_index = int(device.split(':')[1])
4758
            else:
4759 4760
                # LR related ops
                device = None
4761 4762
            if device and device_index != device_id:
                continue
4763
            op_desc = op.desc
4764
            ap_op = new_startup_program.global_block().desc.append_op()
4765 4766 4767
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4768
        self._create_vars(new_startup_program.global_block(), block)
4769 4770
        return new_startup_program

4771
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4772
        """
4773
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4774
        """
4775 4776 4777 4778 4779 4780
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4781
        post_ops = self.input_var_to_op[var_name]
4782
        if post_ops is None:
4783
            return None
4784 4785 4786 4787 4788 4789
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4790

4791
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4792
        """
4793 4794
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4795
        """
4796
        prev_ops = self.output_var_to_op[var_name]
4797
        if prev_ops is None:
4798
            return None
4799 4800 4801 4802
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4803
                break
4804
        return result_op
4805 4806

    def _rename_arg(self, op, old_name, new_name):
4807 4808
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4809

4810
    def _create_var(self, block, ref_var, name, dtype=None):
4811 4812 4813 4814 4815 4816 4817 4818
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4819
            dtype=ref_var.dtype if dtype is None else dtype,
4820 4821
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4822 4823
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4824 4825
            need_check_feed=ref_var.desc.need_check_feed(),
        )
4826
        self._clone_var_attr(new_var, ref_var)
4827 4828
        return new_var

4829 4830 4831 4832 4833
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4834 4835 4836 4837 4838 4839
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4840

4841 4842 4843 4844 4845 4846
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4847
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4848
        """
4849
        Get the op_device attribute of a op.
H
hutuxian 已提交
4850
        """
4851 4852 4853 4854 4855
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
4856
        if device:
4857 4858
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
4859
                "supported in pipeline parallemism."
4860
            )
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4874
            op._set_attr(self._op_device_key, f"{self._device}:all")
4875 4876 4877 4878
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
4879 4880 4881
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
4882 4883 4884 4885
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
4886 4887 4888 4889
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
4890 4891 4892
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4893 4894 4895
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
4896
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4897 4898
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4899
            # for checkpoint offloading
4900 4901 4902
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
4903 4904 4905
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4906
                post_op = self._find_post_op(idx, output_name)
4907 4908 4909
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
4910
            else:
4911
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4912 4913 4914
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
4915 4916 4917
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4918 4919 4920
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
4921 4922 4923 4924 4925 4926 4927 4928 4929
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4930
            param_name = self._strip_grad_suffix(grad_name[0])
4931 4932 4933 4934 4935
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
4936 4937
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
4938
                "and regularization ops must have op_role_var attribute."
4939
            )
4940
            op_role_var = op.attr(self._op_role_var_key)
4941 4942
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
4943
                "regularization ops must have two elements."
4944
            )
4945 4946
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4947
            # For sum op added by global gradient clip, it must be
4948
            # put on all devices
4949 4950 4951 4952 4953 4954 4955
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
4956
                device = f"{self._device}:all"
4957
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4958
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4959
            op._set_attr(self._op_device_key, f"{self._device}:all")
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4970 4971
        else:
            other_known_ops = [
4972 4973 4974 4975 4976 4977
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
4978
            ]
4979 4980 4981
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
4982
                "is {}".format(other_known_ops, op.type)
4983
            )
4984
            assert self._is_optimize_op(op)
4985
            op._set_attr(self._op_device_key, f"{self._device}:all")
4986 4987

    def _add_op_device_attr(self, block):
4988
        """
4989
        Add op_device attrribute for ops in block that have
4990
        not that attribute set.
4991
        """
4992
        for idx, op in enumerate(list(block.ops)):
4993 4994 4995 4996 4997
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
4998
                # Copy read related ops to all section to make them exit
4999 5000 5001 5002
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5003
                op._set_attr(self._op_device_key, f"{self._device}:all")
5004 5005
                continue
            # op_device attribute has been set
5006 5007
            if self._get_op_device_attr(op):
                continue
5008
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5009

5010 5011
    def _check_validation(self, block):
        """
5012
        Check whether ops in a block have both the op_device and the
5013 5014
        op_role attributes set.
        Then, return all devices in order.
5015
        """
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5026
        for op in block.ops:
5027
            if not op._has_kernel(op.type):
5028 5029 5030 5031 5032 5033
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5034
            assert op.has_attr(
5035 5036
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5037
            op_role = op.attr(self._op_role_key)
5038 5039 5040 5041 5042
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5043

5044
            assert op.has_attr(
5045 5046 5047 5048
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5049 5050

            device = op.attr(self._op_device_key)
5051 5052 5053 5054 5055 5056 5057
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5058

5059
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5060 5061
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5062 5063
                "for pipeline parallelism."
            )
5064 5065

            if device not in device_list:
5066
                device_list.append(device)
5067

5068
        return device_list
5069

5070
    def _insert_sendrecv_ops_for_boundaries(self, block):
5071
        """
5072
        Insert a pair of send and recv ops for every two
5073 5074
        consecutive ops on different devices.
        """
5075
        # A map from var to device where op takes it as input,
5076
        # avoiding multiple send and recv ops.
5077
        input_var_to_device = dict()
5078 5079 5080 5081 5082 5083 5084 5085
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5086
            'first_optimize_index': first_optimize_index,
5087
        }
5088

5089
        for index, op in enumerate(list(block.ops)):
5090
            cur_device = op.attr(self._op_device_key)
5091 5092
            if cur_device == f"{self._device}:all":
                continue
5093 5094
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5095
                # skip data var
5096 5097
                if var.is_data:
                    continue
5098
                prev_device = None
5099 5100 5101

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5102 5103
                    if var_name not in self._param_device_map:
                        continue
5104
                    prev_device = self._param_device_map[var_name]
5105

5106
                if not prev_device:
5107 5108 5109
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5110

5111 5112
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5113

5114 5115
                if prev_device == cur_device:
                    continue
5116

5117 5118 5119 5120 5121 5122 5123
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5124 5125 5126 5127
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5128 5129
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5130
                        'please check the op_role of op={}'.format(op)
5131
                    )
5132 5133

                    if is_forward:
5134 5135
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5136
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5137 5138 5139
                                prev_id, cur_id, op
                            )
                        )
5140
                    elif is_backward:
5141 5142
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5143
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5144 5145 5146
                                prev_id, cur_id, op
                            )
                        )
5147

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5158 5159
                            (cur_dev, prev_dev)
                        )
5160 5161 5162 5163 5164
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5165 5166
                            (cur_dev, prev_dev)
                        )
5167 5168 5169 5170 5171 5172
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5173
                    var = block.vars[var_name]
5174 5175 5176
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5177 5178 5179 5180 5181 5182 5183
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5184

5185
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5186
                        block._insert_op_without_sync(
5187
                            index=index + extra_index_info['index'],
5188 5189 5190
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5191
                                self._op_device_key: prev_dev,
5192 5193 5194
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5195 5196 5197
                                'ring_id': ring_id,
                            },
                        )
5198
                        extra_index_info['index'] += 1
5199
                        var_shape = list(var.shape)
5200 5201 5202 5203 5204
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5205
                        block._insert_op_without_sync(
5206
                            index=index + extra_index_info['index'],
5207 5208 5209
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5210
                                'out_shape': var_shape,
5211
                                'dtype': var.dtype,
5212
                                self._op_device_key: cur_dev,
5213 5214 5215
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5216 5217 5218
                                'ring_id': ring_id,
                            },
                        )
5219
                        extra_index_info['index'] += 1
5220
                    elif self.schedule_mode == '1F1B':  # 1F1B
5221
                        var_shape = list(var.shape)
5222 5223 5224 5225 5226
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5227

5228
                        numel = np.prod(var_shape)
5229 5230 5231
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5254 5255
                                },
                            )
5256 5257 5258
                            extra_index_info['index'] += 1
                            return

5259 5260
                        _check_stage(cur_id, prev_id)

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5271
                        extra_index_info['index'] += 1
5272 5273
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5274 5275 5276
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5277
                        block._insert_op_without_sync(
5278
                            index=index + extra_index_info['index'],
5279
                            type='send_v2'
5280 5281
                            if not use_mp or is_param
                            else 'partial_send',
5282 5283
                            inputs={'X': var},
                            attrs={
5284
                                self._op_device_key: prev_dev,
5285 5286 5287 5288
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5289 5290 5291
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5292 5293
                            },
                        )
5294
                        extra_index_info['index'] += 1
5295 5296 5297
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5298 5299
                                'first_optimize_index'
                            ]
5300 5301 5302 5303
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5304
                        sync_comm_op = block._insert_op_without_sync(
5305
                            index=insert_index + extra_index_info['index'],
5306 5307 5308 5309
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5310
                                self._op_device_key: prev_dev,
5311
                                self._op_role_key: new_op_role,
5312
                                'ring_id': ring_id,
5313 5314
                            },
                        )
5315
                        if int(op_role) == int(self._op_role.Forward):
5316
                            sync_comm_op._set_attr('pipeline_flag', '')
5317
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5318
                        block._insert_op_without_sync(
5319
                            index=index + extra_index_info['index'],
5320
                            type='recv_v2'
5321 5322
                            if not use_mp or is_param
                            else 'partial_recv',
5323 5324 5325 5326
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5327
                                self._op_device_key: cur_dev,
5328 5329 5330
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5331 5332 5333 5334
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5335 5336
                            },
                        )
5337
                        extra_index_info['index'] += 1
5338
                        if use_mp and not is_param:
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5352 5353
                                },
                            )
5354
                            extra_index_info['index'] += 1
5355 5356 5357
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5358 5359
                            "The given value is {}.".format(self.schedule_mode)
                        )
5360

5361 5362 5363 5364
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5365 5366
        block._sync_with_cpp()

5367
    def _insert_loss_scale(self, block):
5368
        """
5369
        Scale the loss corresponding to number of micro-batches.
5370
        """
5371 5372
        if self._num_microbatches == 1:
            return
5373
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5374
            if self._is_loss_grad_op(op):
5375 5376
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5377
                    "but this op is {}".format(op.type)
5378
                )
5379 5380 5381 5382
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5383 5384
                break

5385 5386
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5387 5388
            if not self._is_optimize_op(op):
                continue
5389 5390 5391
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5392 5393
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5394 5395 5396
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5397 5398
                if not core.grad_var_suffix() in name:
                    continue
5399 5400 5401 5402
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5403 5404 5405
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5406 5407 5408 5409
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5410 5411
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5412
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5413 5414
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5415 5416
            return fused_gradient_names

5417 5418 5419
        merged_gradient_names = []
        first_opt_op_idx = None

5420 5421 5422
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5423 5424 5425 5426 5427 5428 5429 5430
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5431
                    continue
5432

5433
            if self._is_backward_op(op) and first_opt_op_idx is None:
5434
                first_opt_op_idx = index + 1
5435 5436
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5437

5438 5439 5440
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5441
                op_role_var = op.attr(self._op_role_var_key)
5442 5443
                if len(op_role_var) == 0:
                    continue
5444 5445
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5446 5447
                    offset = 0
                    param_name = op_role_var[i]
5448 5449 5450 5451
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5452

5453
                    param_grad_name = param_name + core.grad_var_suffix()
5454
                    merged_param_grad_name = param_grad_name + merged_suffix
5455
                    if not block.has_var(merged_param_grad_name):
5456 5457 5458 5459 5460 5461
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5462
                    assert block.has_var(merged_param_grad_name)
5463

5464 5465 5466
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5467
                    block._insert_op(
5468 5469 5470 5471
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5472
                        attrs={
5473 5474 5475
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5476
                            # a trick to run this op once per mini-batch
5477 5478 5479
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5480
                    offset += 1
5481 5482
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5483 5484

                    is_fp16_grad = 'cast_fp16' in grad_name
5485
                    need_cast = is_fp16_grad is not fp16_allreduce
5486 5487 5488 5489 5490 5491

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5492
                        cast_grad_var_name = param_grad_name + '@TMP'
5493
                        cast_grad_var = self._create_var(
5494 5495
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5496
                        cast_grad_var.persistable = False
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5508
                        offset += 1
5509 5510 5511 5512 5513 5514 5515
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5516 5517
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5518 5519
                        },
                    )
5520 5521 5522
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5523 5524
        if not fp16_allreduce:
            return merged_gradient_names
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5559

5560
        return merged_gradient_names
5561

5562 5563 5564
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
5565
        grad_param_pairs = self._sort_grad_param_by_dtype(
5566 5567
            main_block, grad_param_pairs
        )
5568

5569 5570 5571
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
5572
        cur_size = 0.0
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
5583 5584
                stop_gradient=False,
            )
5585
            real_param = main_block.var(param)
5586 5587
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5588 5589 5590 5591
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
5592 5593 5594 5595 5596
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
5597
                grad_param_segments.append(
5598 5599
                    ([real_grad], [real_param], [merged_grad_var])
                )
5600
                last_dtype = real_grad.dtype
5601
                cur_size = 0.0
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5614 5615 5616 5617 5618 5619
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
5620
            # keep the '.cast_fp16' info in the fuse var name
5621 5622 5623 5624 5625 5626 5627 5628 5629
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
5630 5631 5632 5633
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
5634 5635
                stop_gradient=False,
            )
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5661
                outputs={"Output": grads, "FusedOutput": fused_grad},
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5678 5679 5680 5681 5682 5683 5684
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5685 5686
                },
            )
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
5697
                    "FusedOutput": fused_merged_grad,
5698 5699 5700 5701 5702 5703 5704 5705
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
5706 5707 5708
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
5709 5710 5711 5712 5713 5714 5715 5716 5717
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
5718
            need_cast = is_fp16_grad is not fp16
5719 5720 5721 5722
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
5740 5741 5742 5743 5744 5745 5746
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
5747 5748
                attrs={self._op_role_key: self._op_role.Backward},
            )
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
5777 5778 5779 5780 5781 5782
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5783
        return fused_merged_gradients, first_opt_op_idx
5784

5785 5786 5787
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5807 5808 5809
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
5821 5822
                        (op_role_var[i + 1], op_role_var[i])
                    )
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
5836 5837 5838 5839 5840 5841
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
5842 5843 5844 5845
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5846

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
5877 5878 5879 5880 5881 5882
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
5883

5884 5885
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5886
        for prog in program_list:
5887 5888 5889 5890 5891 5892
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5893 5894
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5895 5896 5897
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5898
                self._create_vars(new_sub_block, origin_sub_block)
5899
                op._set_attr('sub_block', new_sub_block)
5900 5901 5902

    def _get_device_info(self, block):
        for op in block.ops:
5903 5904
            if not op._has_kernel(op.type):
                continue
5905 5906 5907
            op_device = op.attr(self._op_device_key)
            return op_device

5908 5909 5910
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
5911 5912 5913 5914 5915 5916 5917
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5918
        for prog in program_list:
5919 5920
            block = prog.block(0)
            for var_name in block.vars:
5921 5922
                if var_name == "double_buffer_0":
                    continue
5923
                var = block.var(var_name)
5924 5925
                if not var.persistable:
                    continue
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5941 5942 5943 5944 5945 5946
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
5947
                        continue
5948 5949
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
5950 5951
                        self._op_role.Optimize.LRSched
                    ):
5952 5953 5954 5955
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
5956 5957
                            "op {}.".format(var_name, op)
                        )
5958 5959 5960 5961 5962
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
5963 5964
            if not var_name in write_info:
                continue
5965 5966 5967 5968 5969

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5970
            write_dev_index = int(write_device.split(':')[1])
5971 5972
            all_progs = var_info[var_name]
            for prog in all_progs:
5973 5974
                if prog == write_prog:
                    continue
5975 5976 5977
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5978 5979 5980 5981 5982 5983 5984 5985 5986
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5987 5988 5989

                write_block._insert_op(
                    index=0,
5990
                    type='send_v2',
5991 5992 5993
                    inputs={
                        'X': write_block.var(var_name),
                    },
5994
                    attrs={
5995 5996
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
5997 5998
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5999 6000 6001 6002 6003
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6004 6005
                read_block._insert_op(
                    index=0,
6006
                    type='recv_v2',
6007 6008
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6009 6010 6011 6012
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6013 6014
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6015 6016 6017 6018 6019
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6020 6021 6022 6023 6024 6025
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6026
                        self._op_device_key: read_device,
6027 6028
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6029 6030 6031 6032
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6033 6034

    def _is_gradient_clip_op(self, op):
6035 6036 6037
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6038 6039

    def _is_regularization_op(self, op):
6040 6041 6042
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6043

6044 6045
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6046 6047 6048
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6049

6050 6051 6052 6053 6054
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6055
        output_var_to_op = defaultdict(list)
6056
        # A map from var to op which takes it as input.
6057
        input_var_to_op = defaultdict(list)
6058

6059
        for index, op in enumerate(block.ops):
6060
            for var_name in op.input_arg_names:
6061
                input_var_to_op[var_name].append([op, index])
6062
            for var_name in op.output_arg_names:
6063 6064 6065 6066 6067 6068 6069 6070
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6071 6072
        if self.schedule_mode != '1F1B':
            return
6073 6074 6075

        block = program.block(0)

6076
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6077 6078
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6079
            if op.type == recv_type and self._is_backward_op(op):
6080 6081 6082
                backward_recv_index = index
                break

6083
        # last pipeline stage
6084 6085
        if backward_recv_index is None:
            return
6086 6087 6088

        offset = 0
        for index, op in enumerate(list(block.ops)):
6089 6090
            if index >= backward_recv_index:
                break
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6107 6108
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6109
        block._sync_with_cpp()
6110

6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6124 6125 6126 6127
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6128
                backward_insert_index = i
6129 6130 6131 6132 6133 6134
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6154 6155 6156 6157 6158 6159 6160
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6161 6162 6163 6164 6165 6166 6167
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6195 6196
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6197

6198 6199 6200
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6201
        main_block = loss.block
6202
        self.origin_main_block = main_block
6203
        main_program = main_block.program
6204 6205
        if startup_program is None:
            startup_program = default_startup_program()
6206

6207 6208
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6209 6210 6211 6212 6213 6214 6215
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6216 6217
            'mp_degree',
            'mp_rank',
6218 6219
        ]
        for key in required_keys:
6220 6221 6222
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6223 6224 6225 6226 6227 6228 6229 6230
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6231
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6232 6233
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6234 6235

        optimize_ops, params_grads = self._optimizer.minimize(
6236 6237
            loss, startup_program, parameter_list, no_grad_set
        )
6238
        self._param_device_map = self._origin_optimizer._param_device_map
6239

6240 6241 6242 6243
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6244 6245 6246
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6258 6259 6260
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6261 6262
            "another in the order of their ids."
        )
6263
        # Step2: add send and recv ops between section boundaries
6264
        self._insert_sendrecv_ops_for_boundaries(main_block)
6265

6266
        # Step3: split program into sections and add pairs of
6267 6268
        # send and recv ops for data var.
        main_program = main_block.program
6269
        program_list = self._split_program(main_program, device_list)
6270
        for p in program_list:
6271
            self._create_vars(p.global_block(), main_block)
6272

L
lilong12 已提交
6273 6274 6275 6276 6277
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6278 6279
                "stages."
            )
L
lilong12 已提交
6280 6281
        else:
            self.local_rank %= len(device_list)
6282 6283 6284
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6285
        # Step4: Special Case: process persistable vars that exist in
6286
        # multiple sections
6287
        # FIXME
6288 6289
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6290

6291
        # Step5: Add sub blocks for section programs
6292 6293
        self._add_sub_blocks(main_block, program_list)

6294
        place_list = []
6295 6296
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6297 6298 6299 6300
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6301

6302
        # Step6: Split startup program
6303
        new_startup_program = self._split_startup_program(
6304 6305
            startup_program, self.local_rank
        )
6306 6307 6308 6309

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6310
        real_block = program_list[self.local_rank].global_block()
6311 6312
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6313
        if not self.use_sharding:
6314
            # Step7: clear gradients before each mini-batch and
6315 6316 6317 6318 6319
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6320

6321 6322 6323 6324
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6325 6326 6327
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6328 6329 6330 6331 6332

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6333
        main_program._pipeline_opt = {
H
hutuxian 已提交
6334 6335
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6336
            "pipeline_stage": self.local_rank,
6337
            "num_pipeline_stages": len(device_list),
6338
            "schedule_mode": self.schedule_mode,
6339
            "inner_parallelism": len(device_list),
6340 6341
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6342
            "place_id": place_id,
6343
            "sync_steps": -1,
L
lilong12 已提交
6344
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6345 6346
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6347 6348 6349 6350 6351 6352 6353
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6354 6355


M
mapingshuo 已提交
6356 6357
class RecomputeOptimizer(Optimizer):
    """
6358
        :api_attr: Static Graph
S
swtkiwi 已提交
6359

M
mapingshuo 已提交
6360 6361 6362
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6363
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6364 6365 6366
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6367
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6368 6369 6370
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6371
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6372 6373
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6374

M
mapingshuo 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6420
        if framework._non_static_mode():
Z
zhongpu 已提交
6421
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6422 6423
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6424 6425
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6426
        self.enable_offload = False
M
mapingshuo 已提交
6427 6428

    def _set_checkpoints(self, checkpoints):
6429 6430
        """
        Args:
6431
            checkpoints (list): List of Variable or string
6432 6433 6434 6435 6436
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6437 6438
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6439
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6440 6441
        self._checkpoints = checkpoints

6442
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6443 6444 6445
    def _enable_offload(self):
        self.enable_offload = True

6446 6447
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6448
        """
6449
            :api_attr: Static Graph
S
swtkiwi 已提交
6450

M
mapingshuo 已提交
6451 6452 6453 6454
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6455
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6456 6457 6458 6459

        Examples:
            .. code-block:: python

6460
                import paddle
M
mapingshuo 已提交
6461
                import paddle.fluid as fluid
6462

6463
                paddle.enable_static()
M
mapingshuo 已提交
6464 6465 6466 6467 6468 6469
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6470

M
mapingshuo 已提交
6471 6472 6473 6474
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6475

M
mapingshuo 已提交
6476 6477 6478 6479
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6480 6481
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6482
                except NotImplementedError as e:
6483
                    print(e)
M
mapingshuo 已提交
6484 6485
        """
        raise NotImplementedError(
6486 6487
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6520
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6521 6522 6523 6524
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6525
                    no_grad_set=None)
M
mapingshuo 已提交
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6536 6537 6538 6539 6540 6541 6542 6543 6544
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6545 6546
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
6547 6548 6549 6550 6551 6552

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
6553 6554
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
6555 6556 6557 6558 6559 6560 6561 6562

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6563 6564 6565
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
6592 6593 6594

        return

6595 6596 6597
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
6598 6599 6600 6601 6602 6603 6604 6605
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6606 6607
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
6608 6609

    def _insert_fetch_op(self, idx, varname):
6610 6611 6612 6613 6614
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6615 6616 6617

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6618
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6619 6620

    def _insert_offload_op(self, idx, varname):
6621 6622 6623 6624 6625
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
6626
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6627
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6628 6629

    def _insert_sync_op(self, op_idx, checkpoint_name):
6630
        # single stream offload no need sync
J
JZ-LIANG 已提交
6631 6632 6633
        pass

    def _record_fetch_op(self, idx):
6634 6635 6636
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
6637 6638 6639 6640 6641 6642 6643 6644
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
6645 6646 6647 6648 6649
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
6650 6651 6652 6653
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
6654 6655 6656
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
6657 6658 6659 6660 6661 6662 6663
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6664
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
6679 6680
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
6681 6682 6683

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
6684 6685
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
6686 6687
        last_last_fetch_checkpoint = None

6688
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
6698 6699 6700
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
6701
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6702
                            if input_var != self.sorted_checkpoint_names[0]:
6703 6704 6705
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
6706

6707
                        # should check the current used checkpoint is ths last fetch one
6708 6709 6710 6711 6712
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
6713 6714 6715
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
6716 6717
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
6718 6719 6720 6721
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
6722 6723 6724
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
6725

6726 6727 6728 6729 6730
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6741
                    logging.debug(
6742 6743
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6744 6745 6746 6747 6748
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
6749 6750 6751 6752 6753
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6754 6755 6756 6757

    def _parse_forward(self):

        self.idx2insertions = {}
6758
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6759 6760 6761 6762 6763 6764 6765
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
6766
                'idx': -1,
J
JZ-LIANG 已提交
6767 6768 6769 6770 6771 6772 6773 6774 6775
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
6776 6777
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
6778 6779
        last_offload_checkpoint = None

6780
        for i, op in enumerate(
6781 6782
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
6783 6784 6785 6786 6787 6788 6789

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
6790 6791 6792 6793 6794
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
6795 6796 6797

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
6798
                        if last_offload_checkpoint is not None:
6799 6800 6801 6802 6803 6804 6805 6806 6807
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6808
                            else:
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
6822 6823 6824 6825 6826
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6827 6828 6829 6830
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
6831 6832
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
6846
                    # sync if last checkpoint has not been sync
6847 6848 6849 6850 6851 6852
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
6853 6854 6855
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
6866
            # record checkpoint usage
J
JZ-LIANG 已提交
6867 6868
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
6869 6870 6871
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
6872 6873 6874
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

6875 6876 6877 6878 6879
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
6880 6881 6882
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
6883 6884
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
6885 6886 6887 6888 6889

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
6890 6891
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
6892 6893 6894 6895
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6896
                    logging.debug(
6897 6898
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6899 6900 6901
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6902
                    logging.debug(
6903 6904
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
6905 6906 6907
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
6908 6909 6910 6911 6912
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
6913 6914 6915 6916 6917 6918 6919 6920

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
6921
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
6922 6923 6924 6925 6926 6927
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
6928
        if startup_program is None:
J
JZ-LIANG 已提交
6929
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6930 6931

        with program_guard(self._main_program, startup_program):
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
6942 6943 6944 6945
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
6946 6947
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
6948
                self.checkpoint_name2pinned_name[
6949 6950
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
6951
                self.checkpoint_name2fetch_name[
6952 6953
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

6967 6968 6969 6970 6971 6972 6973 6974
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
6975 6976 6977 6978 6979 6980 6981
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
6982 6983
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
6984 6985 6986 6987 6988 6989 6990 6991
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
6992

M
mapingshuo 已提交
6993 6994 6995 6996 6997 6998
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6999 7000


M
mapingshuo 已提交
7001 7002 7003 7004
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7005

M
mapingshuo 已提交
7006 7007
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7008
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7009 7010 7011 7012
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7013
                    no_grad_set=None)
M
mapingshuo 已提交
7014 7015
                print("Finished backward")
        """
7016 7017 7018
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7019

J
Jiabin Yang 已提交
7020
        if framework._non_static_mode():
M
mapingshuo 已提交
7021
            raise NotImplementedError(
7022 7023
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7024 7025 7026 7027

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7028 7029 7030 7031 7032 7033 7034
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7035 7036 7037 7038 7039 7040
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7041 7042
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7043
            else:
7044 7045 7046 7047 7048 7049
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7050 7051 7052 7053 7054

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
7068

M
mapingshuo 已提交
7069 7070 7071 7072 7073
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
7074 7075
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7076 7077 7078 7079
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7080

M
mapingshuo 已提交
7081 7082
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7083
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7084 7085 7086 7087
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7088
                    no_grad_set=None)
7089

M
mapingshuo 已提交
7090 7091
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7092

M
mapingshuo 已提交
7093 7094 7095
                print("Finished apply_optimize")
        """

7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7108
        assert isinstance(loss, Variable), "The loss should be an Variable."
7109 7110 7111
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
7112
        if framework._non_static_mode():
M
mapingshuo 已提交
7113
            raise NotImplementedError(
7114 7115 7116 7117 7118 7119 7120 7121
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7122

7123 7124 7125
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7126 7127 7128 7129

        return optimize_ops, params_grads


7130
class LookaheadOptimizer:
7131
    r"""
7132
        :api_attr: Static Graph
S
swtkiwi 已提交
7133

M
mapingshuo 已提交
7134 7135 7136 7137
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7138 7139
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7140 7141 7142
    every k training steps as follows:

    .. math::
7143

M
mapingshuo 已提交
7144
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7145

7146
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7147 7148

    Args:
7149
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7159
            import numpy.random as random
M
mapingshuo 已提交
7160

7161
            paddle.enable_static()
7162

7163 7164 7165 7166
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
7167
            loss = paddle.mean(x=loss)
7168 7169 7170 7171 7172 7173 7174 7175 7176
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7177

7178 7179 7180
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7181

7182 7183
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7184

7185 7186 7187
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7188 7189 7190 7191 7192

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
7193
        if framework._non_static_mode():
Z
zhongpu 已提交
7194
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7195
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7196 7197 7198
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7199
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7210 7211
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7223 7224 7225 7226 7227 7228 7229
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7230 7231 7232 7233 7234 7235
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7236 7237 7238 7239 7240 7241 7242
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7243

7244 7245 7246
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7247

7248 7249
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7250 7251 7252 7253 7254 7255 7256
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7257

7258
            # Add Var alpha to main prog and startup prog
7259 7260 7261 7262 7263 7264 7265
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7266

7267
            # Add Var step
7268 7269 7270 7271 7272 7273 7274
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7275 7276 7277
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
7278 7279 7280
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7281

7282 7283 7284
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7285

7286
            mod = paddle.remainder(step, k)
7287
            with layers.control_flow.Switch() as switch:
7288 7289 7290 7291 7292
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7293 7294 7295 7296 7297 7298 7299
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
7300 7301 7302
                                slow_var, layers.elementwise_sub(one_var, alpha)
                            ),
                        )
7303 7304 7305 7306
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7307
        return mini_out
7308 7309


7310
class GradientMergeOptimizer:
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7365 7366
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7367
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7368
        if framework._non_static_mode():
7369 7370 7371
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7372 7373
                "and one-time optimizer.minimize()"
            )
7374

7375 7376 7377 7378
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7379 7380 7381 7382 7383

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7384
        self._optimize_ops = None
7385

7386 7387 7388 7389 7390 7391
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7392 7393 7394 7395 7396 7397 7398 7399
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7400 7401 7402 7403 7404 7405 7406 7407 7408
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7409 7410
            loss, startup_program=startup_program
        )
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7422 7423 7424
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7425 7426 7427 7428 7429 7430
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7431 7432 7433 7434 7435
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7436 7437 7438

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7492 7493

        # Add step var & cond var
7494 7495 7496 7497 7498 7499 7500 7501
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7502

7503 7504 7505
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7506 7507 7508 7509

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7510 7511 7512 7513 7514 7515
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7516 7517

            # cond_var = (step_var == 0)
7518 7519 7520 7521 7522
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7533

7534
        # TODO(mapingshuo) support sparse embedding
7535 7536
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7537
            assert (
7538
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7539 7540
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7541
            self._remove_op_role_var(param, grad)
7542

7543
        param_to_grad = {k.name: v for (k, v) in params_grads}
7544 7545 7546
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7547 7548 7549 7550 7551
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7552
            param_var = main_block.var(param_name)
7553 7554 7555 7556 7557 7558 7559
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
7560
            param_to_gradient_merge[param_name] = gradient_merge_var
7561

7562 7563 7564 7565
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
7577

7578 7579 7580
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7581
                inputs={'X': grad, 'Y': gradient_merge_var},
7582
                outputs={'Out': gradient_merge_var},
7583 7584 7585 7586 7587
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
7588 7589 7590 7591 7592 7593 7594 7595
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7596
            op_maker = core.op_proto_and_checker_maker
7597 7598 7599 7600

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
7614

7615 7616 7617 7618 7619 7620
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7621

7622
            self._optimize_ops = self.inner_optimizer.apply_gradients(
7623 7624
                new_params_grads
            )
7625

7626 7627
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7628 7629 7630 7631 7632 7633 7634 7635 7636
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
7637 7638 7639 7640 7641 7642

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

7643 7644 7645
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7646 7647
        assert isinstance(loss, Variable), "The loss should be an Variable."

7648 7649 7650 7651 7652 7653
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
7654

7655 7656 7657
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
7658 7659

        return optimize_ops, params_grads