creation.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import _C_ops
from ..framework import core, dygraph_only
17
from ..framework import _current_expected_place, _get_paddle_place
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from ..tensor import to_tensor
from ..tensor import max
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype

__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


def _infer_dense_shape(indices):
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
    return list(lens.numpy())


42 43 44 45 46 47 48 49 50 51 52 53
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
@dygraph_only
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices 
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. If not provided the smallest shape will be inferred to 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``indices`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
            dense_shape = [2, 3]
            coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

110 111
    place = _get_place(place)

112 113 114 115 116 117 118
    if not isinstance(indices, core.eager.Tensor):
        indices = to_tensor(
            indices, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(indices.shape) != 2:
        raise ValueError("'indices' must be 2-D.")
119 120

    if not indices.place._equals(place):
121
        indices = indices._copy_to(place, False)
122 123

    if not values.place._equals(place):
124 125
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
126 127
    values.stop_gradient = stop_gradient

128 129
    if shape is None:
        shape = _infer_dense_shape(indices)
130 131 132

    return _C_ops.final_state_sparse_create_sparse_coo_tensor(values, indices,
                                                              shape)
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the 
    ``crows``, ``cols`` and ``values``.

    Args:
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the 
            starting position of the first non-zero element of each row in values. 
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``crow``, ``cols`` and ``values`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
196 197 198

    place = _get_place(place)

199 200 201 202 203 204 205 206 207 208 209
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError(
            "SparseCsrTensor only support 2-D or 3-D matrix. The 'crows', 'cols' and 'values' must be 1-D."
        )

210
    if not crows.place._equals(place):
211
        crows = crows._copy_to(place, False)
212 213

    if not cols.place._equals(place):
214
        cols = cols._copy_to(place, False)
215 216

    if not values.place._equals(place):
217 218
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
219
    values.stop_gradient = stop_gradient
220 221
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)