common_table.h 4.5 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <condition_variable>  // NOLINT
#include <mutex>               // NOLINT
#include <set>

#include "paddle/fluid/distributed/table/table.h"

#include "paddle/fluid/distributed/common/utils.h"

namespace paddle {
namespace distributed {

template <typename T>
struct ReservoirValue {
  std::vector<T> values;
  uint32_t counter;
  uint32_t dim;

  ReservoirValue() {
    dim = 0;
    values.resize(dim);
    counter = 0;
  }

  ReservoirValue(uint32_t dim) {
    this->dim = dim;
    values.resize(dim);
    counter = 0;
  }

  void add(const T *value, int numel) {
    GetBlas<T>().VADD(numel, values.data(), value, values.data());
    counter++;
  }

  void add(T *value, int numel) {
    GetBlas<T>().VADD(numel, values.data(), value, values.data());
    counter++;
  }

  void avg() {
    auto scale = 1 / static_cast<T>(counter);
    GetBlas<T>().SCAL(values.size(), scale, values.data());
  }

  void reset() {
    values.resize(dim, 0);
    counter = 0;
  }
};

class SparseTable : public Table {
 public:
  SparseTable() {}
  virtual ~SparseTable() {}

  virtual void *get_shard(size_t shard_idx) { return 0; }

  int32_t pull_dense(float *values, size_t num) override { return 0; }

  int32_t push_dense(const float *values, size_t num) override { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

  static size_t get_sparse_shard(uint32_t shard_num, uint32_t server_num,
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }
};

class DenseTable : public Table {
 public:
  DenseTable() {}
  virtual ~DenseTable() {}

  virtual void *get_shard(size_t shard_idx) { return 0; }
  int32_t pull_sparse(float *values, const uint64_t *keys,
                      size_t num) override {
    return 0;
  }
  int32_t push_sparse(const uint64_t *keys, const float *values,
                      size_t num) override {
    return 0;
  }
  int32_t push_dense_param(const float *values, size_t num) override {
    return 0;
  }
  int32_t shrink() override { return 0; }
};

class BarrierTable : public Table {
 public:
  BarrierTable() {}
  virtual ~BarrierTable() {}

  virtual void *get_shard(size_t shard_idx) { return 0; }

  int32_t pull_dense(float *values, size_t num) override { return 0; }

  int32_t push_dense(const float *values, size_t num) override { return 0; }

  int32_t pull_sparse(float *values, const uint64_t *keys,
                      size_t num) override {
    return 0;
  }
  int32_t push_sparse(const uint64_t *keys, const float *values,
                      size_t num) override {
    return 0;
  }
  int32_t push_dense_param(const float *values, size_t num) override {
    return 0;
  }
  int32_t shrink() override { return 0; }
  virtual void clear(){};
  virtual int32_t flush() { return 0; };
  virtual int32_t load(const std::string &path, const std::string &param) {
    return 0;
  }
  virtual int32_t save(const std::string &path, const std::string &param) {
    return 0;
  }
  virtual int32_t initialize_shard() { return 0; };

  virtual int32_t initialize() override;
  // only for barrier
  // 0: send_barrier 1: recv_barrier 2: complete
  virtual int32_t barrier(const uint32_t trainer_id,
                          const std::string barrier_type) override;

  virtual int32_t set_table_map(
      std::unordered_map<uint32_t, std::shared_ptr<Table>> *table_map) override;

 private:
  std::mutex mutex_;
  std::condition_variable trainer_wait_;
  std::set<uint64_t> trainer_ids_;
  std::set<uint64_t> trainer_all_;
  std::atomic<int> trigger_;
  std::atomic<bool> exit_;
  std::unordered_map<uint32_t, std::shared_ptr<Table>> *table_map_;
};
}  // namespace distributed
}  // namespace paddle