api_custom_impl.cc 12.4 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "glog/logging.h"
18
#include "paddle/phi/api/lib/api_gen_utils.h"
19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
21
#include "paddle/phi/api/lib/tensor_copy.h"
Z
zyfncg 已提交
22
#include "paddle/phi/common/type_traits.h"
23
#include "paddle/phi/core/compat/convert_utils.h"
24 25
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
26
#include "paddle/phi/infermeta/backward.h"
27 28 29
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
30
#include "paddle/phi/infermeta/unary.h"
31 32 33 34

namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

Y
YuanRisheng 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
Tensor add_n_impl(const std::vector<Tensor>& x) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  bool is_sr_kernel = true;
  for (auto& input : x) {
    if (phi::DenseTensor::classof(input.impl().get())) {
      is_sr_kernel = false;
      break;
    }
  }

  const std::string kernel_name = (is_sr_kernel ? "add_n_sr" : "add_n");

  VLOG(6) << "add_n API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  const auto& kernel = kernel_result.kernel;
  VLOG(6) << kernel_name << " kernel: " << kernel;
  auto* dev_ctx = GetDeviceContextByBackend(
      kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);

  Tensor api_output;

  if (is_sr_kernel) {
    std::vector<const phi::SelectedRows*> input_x(x.size());
    for (size_t i = 0; i < input_x.size(); ++i) {
      input_x[i] = static_cast<phi::SelectedRows*>(x[i].impl().get());
    }
    auto x_meta_vec = MakeMetaTensor(input_x);
    std::vector<const phi::MetaTensor*> x_metas(x_meta_vec.size());
    for (size_t i = 0; i < x_meta_vec.size(); ++i) {
      x_metas[i] = &x_meta_vec[i];
    }
    auto kernel_out = SetSelectedRowsKernelOutput(&api_output);
    phi::MetaTensor meta_out(kernel_out);
    phi::AddNInferMeta(x_metas, &meta_out);

    using kernel_signature =
        void (*)(const platform::DeviceContext&,
                 const std::vector<const phi::SelectedRows*>&,
                 phi::SelectedRows*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

    (*kernel_fn)(*dev_ctx, input_x, kernel_out);
  } else {
    std::vector<const phi::TensorBase*> input_x(x.size());
102 103
    std::vector<std::shared_ptr<phi::DenseTensor>> temp_dense_tensots;
    temp_dense_tensots.reserve(x.size());
Y
YuanRisheng 已提交
104
    for (size_t i = 0; i < input_x.size(); ++i) {
105 106 107 108 109 110
      if (phi::DenseTensor::classof(x[i].impl().get())) {
        temp_dense_tensots.push_back(PrepareData(x[i], kernel.InputAt(0), {}));
        input_x[i] = temp_dense_tensots.back().get();
      } else {
        input_x[i] = x[i].impl().get();
      }
Y
YuanRisheng 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    }
    auto x_meta_vec = MakeMetaTensor(input_x);
    std::vector<const phi::MetaTensor*> x_metas(x_meta_vec.size());
    for (size_t i = 0; i < x_meta_vec.size(); ++i) {
      x_metas[i] = &x_meta_vec[i];
    }
    auto kernel_out = SetKernelOutput(&api_output);
    phi::MetaTensor meta_out(kernel_out);
    phi::AddNInferMeta(x_metas, &meta_out);

    using kernel_signature =
        void (*)(const platform::DeviceContext&,
                 const std::vector<const phi::TensorBase*>&,
                 phi::DenseTensor*);
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

    (*kernel_fn)(*dev_ctx, input_x, kernel_out);
128 129 130
    if (kernel_result.has_fallback_cpu) {
      TransDataBackend(kernel_out, kernel_backend, kernel_out);
    }
Y
YuanRisheng 已提交
131 132 133 134 135
  }

  return api_output;
}

136
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
137
  Tensor out;
138
  copy(x, place, blocking, &out);
139 140 141
  return out;
}

142 143
////////////////// Backward(grad) api impls //////////////////////

144
void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
145 146 147
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
148
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
149
      "imag_grad", kernel_key);
150
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
151 152 153 154 155 156 157 158

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

Z
zyfncg 已提交
159
  auto kernel_out = SetKernelOutput(x_grad);
Z
zyfncg 已提交
160 161 162 163 164 165 166 167 168 169
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

Z
zyfncg 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad) {
  DataType kernel_data_type = ParseDataType(weight);
  auto kernel_key_set = ParseKernelKeyByInputArgs(weight);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
  VLOG(6) << "embedding_grad API kernel key: [" << kernel_key.backend() << ", "
          << kernel_key.layout() << ", " << kernel_data_type << "]";

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  if (phi::DenseTensor::classof(weight.impl().get())) {
    std::string kernel_name =
        sparse ? "embedding_sparse_grad" : "embedding_grad";
187
    auto kernel_result =
Z
zyfncg 已提交
188 189 190
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
191
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
192 193 194 195 196 197 198
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = PrepareData(weight, kernel.InputAt(1), {});
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
Z
zyfncg 已提交
199
      auto* kernel_out = SetSelectedRowsKernelOutput(weight_grad);
Z
zyfncg 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->dims());
      meta_out.set_dtype(input_weight->dtype());
      kernel_out->set_height(input_weight->dims()[0]);

      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
Z
zyfncg 已提交
219
      auto* kernel_out = SetKernelOutput(weight_grad);
Z
zyfncg 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  } else {
    std::string kernel_name = sparse ? "sparse_weight_embedding_sparse_grad"
                                     : "sparse_weight_embedding_grad";
239
    auto kernel_result =
Z
zyfncg 已提交
240 241 242
        phi::KernelFactory::Instance().SelectKernelOrThrowError(
            kernel_name,
            {kernel_key.backend(), kernel_key.layout(), kernel_data_type});
243
    const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
244 245 246 247 248 249 250
    VLOG(6) << kernel_name << " API kernel: " << kernel;

    auto input_x = PrepareData(x, kernel.InputAt(0), {});
    auto input_weight = TensorToSelectedRows(weight);
    auto input_out_grad = PrepareData(out_grad, kernel.InputAt(2), {});

    if (sparse) {
Z
zyfncg 已提交
251
      auto* kernel_out = SetSelectedRowsKernelOutput(weight_grad);
Z
zyfncg 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
      phi::MetaTensor meta_out(kernel_out);
      phi::UnchangedInferMeta(MakeMetaTensor(*input_weight), &meta_out);
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::SelectedRows*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    } else {
Z
zyfncg 已提交
268
      auto* kernel_out = SetKernelOutput(weight_grad);
Z
zyfncg 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      phi::MetaTensor meta_out(kernel_out);
      meta_out.set_dims(input_weight->GetCompleteDims());
      meta_out.set_dtype(input_weight->dtype());
      using kernel_signature = void (*)(const platform::DeviceContext&,
                                        const phi::DenseTensor&,
                                        const phi::SelectedRows&,
                                        const phi::DenseTensor&,
                                        int64_t,
                                        phi::DenseTensor*);
      auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
      (*kernel_fn)(*dev_ctx,
                   *input_x,
                   *input_weight,
                   *input_out_grad,
                   padding_idx,
                   kernel_out);
    }
  }
}

289
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad) {
Z
zyfncg 已提交
290 291 292
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
293
  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
Z
zyfncg 已提交
294
      "real_grad", kernel_key);
295
  const auto& kernel = kernel_result.kernel;
Z
zyfncg 已提交
296 297 298 299 300 301 302 303

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

Z
zyfncg 已提交
304
  auto kernel_out = SetKernelOutput(x_grad);
Z
zyfncg 已提交
305 306 307 308 309 310 311 312 313 314
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);
}

315 316
}  // namespace experimental
}  // namespace paddle