test_regularizer.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
C
chengduo 已提交
18 19 20
from functools import partial
import contextlib
import numpy as np
L
littletomatodonkey 已提交
21
import random
C
chengduo 已提交
22 23 24
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
25 26 27 28
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
from paddle.fluid.backward import append_backward
29 30 31 32


class TestL2DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
33
        paddle.enable_static()
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L2DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L2DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
55 56 57 58
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
59
        params_grads = append_backward(mean_out)
60 61 62 63 64
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 2)
C
chengduo 已提交
65
        self.assertEqual(block.ops[-1].type, 'sum')
66 67 68
        self.assertEqual(block.ops[-2].type, 'scale')


69 70
class TestL1DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
71
        paddle.enable_static()
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L1DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
93 94 95 96
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
97
        params_grads = append_backward(mean_out)
98 99 100 101 102
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 3)
C
chengduo 已提交
103
        self.assertEqual(block.ops[-1].type, 'sum')
104 105 106 107
        self.assertEqual(block.ops[-2].type, 'scale')
        self.assertEqual(block.ops[-3].type, 'sign')


C
chengduo 已提交
108 109 110 111
def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
112 113 114
            emb_dim=8,
            hid_dim=8,
            hid_dim2=6,
C
chengduo 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    return avg_cost


class TestRegularizer(unittest.TestCase):
    def setUp(self):
L
littletomatodonkey 已提交
135 136 137
        self.word_len = 1500
        self.train_data = [[(random.sample(range(1000), 10), [0])]
                           for _ in range(2)]
C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    @contextlib.contextmanager
    def scope_prog_guard(self, main_prog, startup_prog):
        scope = fluid.core.Scope()
        with fluid.unique_name.guard():
            with fluid.scope_guard(scope):
                with fluid.program_guard(main_prog, startup_prog):
                    yield

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_l2decay_regularizer(self, place, model):
C
cnn 已提交
173
        paddle.seed(1)
L
Leo Chen 已提交
174
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
175 176 177 178 179 180 181 182
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
183
            avg_cost = model(data, label, self.word_len)
C
chengduo 已提交
184 185 186 187 188 189 190 191 192

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.1,
                regularization=fluid.regularizer.L2Decay(1.0))
            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def check_l2decay(self, place, model):
C
cnn 已提交
193
        paddle.seed(1)
L
Leo Chen 已提交
194
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
195 196
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
197

C
chengduo 已提交
198 199 200 201 202 203
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
204
            avg_cost_l2 = model(data, label, self.word_len)
C
chengduo 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

            param_list = fluid.default_main_program().block(0).all_parameters()
            para_sum = []
            for para in param_list:
                para_mul = fluid.layers.square(x=para)
                para_sum.append(fluid.layers.reduce_sum(input=para_mul))
            avg_cost_l2 += fluid.layers.sums(para_sum) * .5

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
            optimizer.minimize(avg_cost_l2)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_l2(self):
        for place in self.get_places():
            dense_sparse_p_sum = []
            for sparse in [True, False]:
                model = partial(bow_net, is_sparse=sparse)
                framework_l2 = self.check_l2decay_regularizer(place, model)
                l2 = self.check_l2decay(place, model)
                assert len(l2) == len(framework_l2)
                for i in range(len(l2)):
                    assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
                dense_sparse_p_sum.append(framework_l2)

            assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
            for i in range(len(dense_sparse_p_sum[0])):
                assert np.isclose(
                    a=dense_sparse_p_sum[0][i],
                    b=dense_sparse_p_sum[1][i],
                    rtol=5e-5)

237
    def test_repeated_regularization(self):
238 239 240 241 242 243 244 245 246
        l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
        l2 = fluid.regularizer.L2Decay(regularization_coeff=0.01)
        fc_param_attr = fluid.ParamAttr(regularizer=l1)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.layers.uniform_random([2, 2, 3])
            out = fluid.layers.fc(x, 5, param_attr=fc_param_attr)
            loss = fluid.layers.reduce_sum(out)
            sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2)
            sgd.minimize(loss)
247 248
        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(
249
                np.random.randn(3, 2).astype('float32'))
C
cnn 已提交
250
            paddle.seed(1)
L
Leo Chen 已提交
251
            paddle.framework.random._manual_program_seed(1)
252

253
            linear1 = fluid.dygraph.Linear(
254
                2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
255
            linear2 = fluid.dygraph.Linear(
256
                2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr)
257 258 259 260

            loss1 = linear1(input)
            loss1.backward()
            # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
261

262 263 264 265 266 267 268 269 270 271 272 273 274
            fluid.optimizer.SGD(parameter_list=linear1.parameters(),
                                learning_rate=1e-2,
                                regularization=l2).minimize(loss1)
            # only set l1 in fluid.ParamAttr
            loss2 = linear2(input)
            loss2.backward()
            fluid.optimizer.SGD(parameter_list=linear2.parameters(),
                                learning_rate=1e-2).minimize(loss2)
            # they should both be applied by l1, and keep the same
            self.assertTrue(
                np.allclose(linear1.weight.numpy(), linear2.weight.numpy()),
                "weight should use the regularization in fluid.ParamAttr!")
            self.assertTrue(
275
                np.allclose(linear1.bias.numpy(), linear2.bias.numpy()),
276 277
                "bias should use the regularization in fluid.ParamAttr!")

C
chengduo 已提交
278

279 280
if __name__ == '__main__':
    unittest.main()