tensor.py 7.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8
from ..layer_helper import LayerHelper

__all__ = [
    'create_tensor', 'cast', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


9
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
10 11 12 13
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


14
def cast(x, dtype):
Y
Yu Yang 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


30
def concat(input, axis=0):
Y
Yu Yang 已提交
31
    """
32 33 34
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
35
    and returns that as the output.
36 37 38 39 40 41 42 43 44 45 46

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


58
def sums(input, out=None):
K
kavyasrinet 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


89
def assign(input, output):
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
        input(Variable): The source variable
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
108 109 110 111 112 113 114 115 116
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


117
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
118
    """
119 120
    **fill_constant**

K
kavyasrinet 已提交
121
    This function creates a tensor of specified *shape* and
122
    *dtype*, and initializes this with a constant supplied in *value*.
K
kavyasrinet 已提交
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
159
                                  output_dim_idx=0):
160 161 162
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
163 164 165
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
    """
Y
Yu Yang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


202
def ones(shape, dtype):
Y
Yu Yang 已提交
203
    """
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
222 223 224 225
    """
    return fill_constant(value=1.0, **locals())


226
def zeros(shape, dtype):
Y
Yu Yang 已提交
227
    """
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
246 247
    """
    return fill_constant(value=0.0, **locals())