cpu_quantize_pass.cc 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

B
baoachun 已提交
21
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
22
#include "paddle/fluid/platform/mkldnn_helper.h"
23 24 25 26 27 28
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

29
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
30 31
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
32 33
using string::PrettyLogDetail;

34 35 36 37 38 39 40 41 42
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

43
void MarkAndLogCannotQuantizeOp(Node* op, const char* details = nullptr) {
44 45 46
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
47
  if (details) msg_ss << " " << details;
48 49
  VLOG(2) << msg_ss.str().c_str();
  op->Op()->SetAttr("mkldnn_data_type", std::string("float32"));
50 51
}

52 53 54 55 56 57
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
58 59
}

60
void LogQuantizationDisabled(Node* op) {
61
  VLOG(2) << "Quantization skipped for operator " << op->Name()
62
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
63
          << "). Attribute mkldnn_data_type != \"int8\".";
64 65
}

66 67
void LogQuantizedOpsCounter(const std::string& type,
                            const int counter,
68 69 70 71 72 73 74
                            const char* details = nullptr) {
  std::stringstream msg_ss;
  msg_ss << "---    quantized " << counter << " " << type << " ops";
  if (details) msg_ss << " " << details;
  PrettyLogDetail(msg_ss.str().c_str());
}

75 76 77 78
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

79 80 81 82 83
void CPUQuantizePass::QuantizeInput(Graph* g,
                                    Node* op,
                                    Node* input,
                                    std::string input_name,
                                    double scale_to_one,
84
                                    bool is_input_unsigned,
85 86
                                    std::string scale_attr_name,
                                    float shift,
87
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
88 89 90
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
91 92
  PADDLE_ENFORCE_EQ(name_found,
                    true,
93 94
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
95 96
                        input_name,
                        op->Op()->Type()));
97
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
98 99 100 101 102 103 104 105 106 107 108 109 110
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
111 112
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
113

Z
Zuza 已提交
114 115 116
  // fix to fc format error
  if (op->Op()->Type() == "fc" &&
      op->Op()->GetAttrIfExists<int>("in_num_col_dims") == 2) {
117 118 119
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NCHW");
Z
Zuza 已提交
120
  } else {
121 122 123
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
Z
Zuza 已提交
124
  }
125 126 127 128 129 130 131 132 133 134 135 136 137
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
138
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
139 140
}

141 142 143
void CPUQuantizePass::QuantizeInputs(Graph* g,
                                     Node* op,
                                     std::string input_name,
144
                                     bool are_inputs_unsigned,
145 146
                                     std::string scale_attr_name,
                                     float shift,
147
                                     std::string shift_attr_name) const {
148
  auto inputs = op->inputs;
149
  auto output = op->outputs[0];
150 151
  PADDLE_ENFORCE_GE(inputs.size(),
                    1,
152 153
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
154 155 156 157
                        op->Name(),
                        inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(),
                    1,
158
                    platform::errors::InvalidArgument(
159 160
                        "OP(%s)'s outputs(%d) must be equal to 1.",
                        op->Name(),
161
                        op->outputs.size()));
162 163 164 165 166 167 168 169

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

170
  double scale_out = GetScaleValueForNode(output);
171
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
172
  float scale = scale_out * max;
173 174 175 176 177 178 179 180

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
181
    q_desc.SetAttr("Shift", shift);
182 183 184
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
185
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
186 187 188 189 190 191 192 193 194 195 196 197 198
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
199
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
200 201
}

202 203 204
void CPUQuantizePass::DequantizeOutput(Graph* g,
                                       Node* op,
                                       Node* output,
205
                                       std::string output_name,
206 207
                                       double scale_to_one,
                                       bool is_unsigned,
208
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
209 210 211
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
212 213
  PADDLE_ENFORCE_EQ(name_found,
                    true,
M
Michał Gallus 已提交
214
                    platform::errors::InvalidArgument(
215
                        "Var(%s) isn't the output of the %s operator.",
216 217
                        output_name,
                        op->Op()->Type()));
218 219 220 221 222 223 224 225 226 227 228 229 230 231
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
232
  deq_desc.SetAttr("is_negative_input", !is_unsigned);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

P
Paulina Gacek 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
void CPUQuantizePass::DequantizeOutputs(Graph* g,
                                        Node* op,
                                        std::string output_name,
                                        double scale_to_one,
                                        bool is_unsigned,
                                        std::string scale_attr_name) const {
  auto outputs = op->outputs;
  PADDLE_ENFORCE_GE(outputs.size(),
                    1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal or greater than 1.",
                        op->Name(),
                        outputs.size()));

  std::vector<std::string> quantize_in_node_names(outputs.size());

  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  for (size_t i = 0; i < outputs.size(); i++) {
    // Create dequantize input variable
    VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
    Node* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);
    quantize_in_node_names[i] = dequantize_in_node->Name();

    // create a dequantize op node for output.
    OpDesc deq_desc;
    deq_desc.SetType("dequantize");
    deq_desc.SetInput("Input",
                      std::vector<std::string>({quantize_in_node_names[i]}));
    deq_desc.SetOutput("Output",
                       std::vector<std::string>({outputs[i]->Name()}));
    deq_desc.SetAttr("Scale", scale);
    deq_desc.SetAttr("is_negative_input", !is_unsigned);
    auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

    // link dequantize op
    UnlinkNodes(op, outputs[i]);
    IR_NODE_LINK_TO(op, dequantize_in_node);
    IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
    IR_NODE_LINK_TO(dequantize_op, outputs[i]);
  }

  // update op's output
  op->Op()->SetOutput(output_name, quantize_in_node_names);
  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

296 297 298
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  bool present = true;
B
baoachun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto name : names) {
      if (scales.find(name) == scales.end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
    }
  } else {
    for (auto name : names) {
      if (var_quant_scales_->find(name) == var_quant_scales_->end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
313 314 315 316 317
    }
  }
  return present;
}

318
bool CPUQuantizePass::AreScalesPresentForNodes(
319
    std::initializer_list<Node*> nodes) const {
320
  bool present = true;
B
baoachun 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto node : nodes) {
      if (scales.count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
    }
  } else {
    for (auto node : nodes) {
      if (var_quant_scales_->count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
335 336 337 338 339
    }
  }
  return present;
}

340
std::pair<bool, phi::DenseTensor> CPUQuantizePass::GetScaleDataByName(
341
    const std::string& name) const {
B
baoachun 已提交
342 343 344 345 346
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    return scales.at(name);
  }
  return var_quant_scales_->at(name);
347 348
}

349
std::pair<bool, phi::DenseTensor> CPUQuantizePass::GetScaleDataForNode(
350
    const Node* node) const {
351 352 353
  return GetScaleDataByName(node->Name());
}

354 355
phi::DenseTensor CPUQuantizePass::GetScaleTensorByName(
    const std::string& name) const {
356
  return GetScaleDataByName(name).second;
357 358
}

359 360
phi::DenseTensor CPUQuantizePass::GetScaleTensorForNode(
    const Node* node) const {
361 362 363 364 365 366 367 368 369 370
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

371 372
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
373
         platform::HasOpINT8DataType(node->Op());
374 375 376
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
377 378 379 380 381 382
  // return true only if all of outputs are ops and their are either quantize or
  // have int8 data type
  return all_of(node->outputs.begin(), node->outputs.end(), [](Node* output) {
    return (output->IsOp() && (output->Op()->Type() == "quantize" ||
                               platform::HasOpINT8DataType(output->Op())));
  });
383 384
}

B
baoachun 已提交
385
void CPUQuantizePass::GetQuantInfo(Graph* graph) const {
386 387
  GetInfoFromTheFirstOp(
      graph, "has_quant_info", "var_quant_scales", var_quant_scales_);
B
baoachun 已提交
388 389
}

390
void CPUQuantizePass::QuantizeConv(Graph* graph,
391
                                   const std::string& conv_type,
392 393 394 395
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
396
  conv_pattern(conv_type, with_residual_data);
397 398 399 400 401 402 403 404

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
405
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
406 407 408
      LogQuantizationDisabled(conv_op);
      return;
    }
409 410 411 412 413

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

414
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
415
    if (with_residual_data && !has_output_scale) {
416 417 418 419
      MarkAndLogCannotQuantizeOp(
          conv_op,
          "Conv op with ResidualData input cannot be quantized "
          "without output scale.");
W
Wojciech Uss 已提交
420 421 422
      return;
    }

423
    if (with_residual_data) {
424 425
      GET_IR_NODE_FROM_SUBGRAPH(
          conv_residual_data, conv_residual_data, conv_pattern);
426
      if (!AreScalesPresentForNodes(
427
              {conv_input, conv_filter, conv_residual_data})) {
428 429
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
430
        return;
431
      }
432 433 434 435 436

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

437 438 439 440 441 442 443
      QuantizeInput(g,
                    conv_op,
                    conv_residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
444
    } else {
445
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
446 447
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
448
        return;
449
      }
450 451
    }

452 453
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
454 455 456 457 458 459 460
    QuantizeInput(g,
                  conv_op,
                  conv_input,
                  "Input",
                  input_scale,
                  is_input_unsigned,
                  "Scale_in");
461

462
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
463
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
464
                                     filter_scale_tensor.numel()};
465 466 467 468 469 470 471 472 473 474

    // If the scale value of a weight is already multiplied by S8_MAX, it does
    // not need to be multiplied again
    if (std::find(change_weight_->begin(),
                  change_weight_->end(),
                  conv_filter->Name()) == change_weight_->end()) {
      eigen_tensor *= static_cast<double>(S8_MAX);
      change_weight_->push_back(conv_filter->Name());
    }

475 476 477 478 479 480
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

481
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
482
    if (has_output_scale) {
483 484 485
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
486 487 488 489 490 491 492
      DequantizeOutput(g,
                       conv_op,
                       conv_output,
                       "Output",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
493 494 495
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
496

497
    // change threshold in bounded ReLu
498 499
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
500
      float scale_out =
R
Ruibiao Chen 已提交
501
          PADDLE_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
502
      float threshold =
R
Ruibiao Chen 已提交
503
          PADDLE_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
504
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
505 506
    }

507 508 509 510 511 512
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

513
  LogQuantizedOpsCounter(
514
      conv_type,
515
      quantize_conv_count,
516
      ((with_residual_data) ? "with residual connection" : ""));
517 518
}

519
void CPUQuantizePass::QuantizeFc(Graph* graph, bool with_residual_data) const {
M
Michał Gallus 已提交
520 521 522
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
523
  fc_pattern(with_residual_data);
M
Michał Gallus 已提交
524 525 526 527

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
528 529
    VLOG(4) << "Quantize fc op " << (with_residual_data ? "with" : "without")
            << " residual data";
M
Michał Gallus 已提交
530 531 532
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
533
    if (!platform::HasOpINT8DataType(fc->Op())) {
534 535 536
      LogQuantizationDisabled(fc);
      return;
    }
537

538
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
539
      MarkAndLogCannotQuantizeOp(fc, "use_mkldnn attribute set to false");
M
Michał Gallus 已提交
540
      return;
541
    }
M
Michał Gallus 已提交
542 543 544 545 546

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

547
    if (!AreScalesPresentForNodes({input, weights})) {
548
      MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
549 550
      return;
    }
551

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(residual_data, residual_data, fc_pattern);
      if (!AreScalesPresentForNodes({residual_data})) {
        MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
        return;
      }

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(residual_data, &is_residual_unsigned);

      QuantizeInput(g,
                    fc,
                    residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
    }

572 573
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
574 575
    QuantizeInput(
        g, fc, input, "Input", input_scale, is_input_unsigned, "Scale_in");
M
Michał Gallus 已提交
576

577
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
578
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
579
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
580 581 582 583 584 585 586
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

587
    // if quantization scale is missing for output tensor, return fp32 data
588
    if (AreScalesPresentForNodes({output})) {
589 590
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
591 592
      DequantizeOutput(
          g, fc, output, "Out", output_scale, is_output_unsigned, "Scale_out");
593 594 595
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
596 597 598 599 600 601

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);
602 603 604
  LogQuantizedOpsCounter("fc",
                         quantize_fc_count,
                         with_residual_data ? "with residual connection" : "");
M
Michał Gallus 已提交
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618 619
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
620
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
621 622 623
      LogQuantizationDisabled(pool_op);
      return;
    }
624 625 626 627

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

628
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
629 630
      MarkAndLogCannotQuantizeOp(pool_op,
                                 "No scale available for the operator");
631 632
      return;
    }
633

634 635
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
636 637
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

638 639
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
640 641
    DequantizeOutput(
        g, pool_op, pool_output, "Out", output_scale, is_output_unsigned);
642 643 644 645 646 647

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);
648
  LogQuantizedOpsCounter("pool2d", quantize_pool_count);
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
664
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
665 666 667
      LogQuantizationDisabled(concat_op);
      return;
    }
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682
    bool are_all_inputs_unsigned{true};
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
    auto inputs = concat_op->inputs;
    for (size_t i = 0; i < inputs.size(); i++) {
      if (AreScalesPresentForVarNames({inputs[i]->Name()})) {
        auto scale_data = GetScaleDataByName(inputs[i]->Name());
        if (scale_data.first == false) {
          are_all_inputs_unsigned = false;
          break;
        }
      }
    }

683 684
    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

685
    if (!AreScalesPresentForNodes({concat_out})) {
686 687
      MarkAndLogCannotQuantizeOp(concat_op,
                                 "No scale available for the operator");
688 689
      return;
    }
690

691
    auto output_scale = GetScaleValueForNode(concat_out);
692

693
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
694

695 696
    DequantizeOutput(
        g, concat_op, concat_out, "Out", output_scale, are_all_inputs_unsigned);
697 698 699 700 701
    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);
702
  LogQuantizedOpsCounter("concat", quantize_concat_count);
703 704
}

705 706 707 708 709 710 711 712 713 714 715 716 717
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
718
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
719 720 721
      LogQuantizationDisabled(prior_box_op);
      return;
    }
722

723 724
    GET_IR_NODE_FROM_SUBGRAPH(
        prior_box_input, prior_box_input, prior_box_pattern);
725

726
    if (!AreScalesPresentForNodes({prior_box_input})) {
727 728
      MarkAndLogCannotQuantizeOp(prior_box_op,
                                 "No scale available for the operator");
729 730
      return;
    }
731

732 733 734
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
735 736 737 738 739
    QuantizeInput(g,
                  prior_box_op,
                  prior_box_input,
                  "Input",
                  input_scale,
740 741 742 743 744 745 746
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);
747
  LogQuantizedOpsCounter("prior_box", quantize_prior_box_count);
748 749
}

750 751 752
void CPUQuantizePass::QuantizeImmutable(Graph* graph,
                                        const std::string& immutable_type,
                                        const std::string& input_name) const {
753 754
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
755 756
  patterns::Immutable immutable_pattern{pattern, name_scope_};
  immutable_pattern(immutable_type, input_name);
757

758
  int quantize_immutable_count = 0;
759 760
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
761 762
    VLOG(4) << "Quantize " + immutable_type + " op";
    GET_IR_NODE_FROM_SUBGRAPH(immutable_op, immutable_op, immutable_pattern);
763 764

    // skip if should not be quantized
765 766
    if (!platform::HasOpINT8DataType(immutable_op->Op())) {
      LogQuantizationDisabled(immutable_op);
767 768
      return;
    }
769 770 771
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, immutable_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(immutable_in, immutable_in, immutable_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(immutable_out, immutable_out, immutable_pattern);
772

773
    // skip if prev op and next op is not quantized
774 775
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(immutable_out)) {
      MarkAndLogCannotQuantizeOp(immutable_op,
776
                                 "No other quantizable operators nearby");
777 778 779
      return;
    }

780 781 782 783 784 785 786
    // skip if the dtype of immutable_in is not float32
    auto dtype = immutable_in->Var()->GetDataType();
    if (dtype != proto::VarType::FP32) {
      MarkAndLogCannotQuantizeOp(immutable_op, "The input dtype is not float.");
      return;
    }

787 788
    if (!AreScalesPresentForNodes({immutable_out})) {
      MarkAndLogCannotQuantizeOp(immutable_op,
789
                                 "No scale available for the operator");
790
      return;
791
    }
792

793
    bool is_input_unsigned{false};
794 795 796 797 798 799 800 801
    auto input_scale = GetScaleValueForNode(immutable_out, &is_input_unsigned);

    QuantizeInput(g,
                  immutable_op,
                  immutable_in,
                  input_name,
                  input_scale,
                  is_input_unsigned);
802

803 804
    bool is_output_unsigned{false};
    auto output_scale =
805
        GetScaleValueForNode(immutable_out, &is_output_unsigned);
P
Paulina Gacek 已提交
806 807 808 809 810 811 812 813 814 815 816
    if (immutable_type == "split") {  // ops with multiple outputs
      DequantizeOutputs(
          g, immutable_op, "Out", output_scale, is_output_unsigned);
    } else {
      DequantizeOutput(g,
                       immutable_op,
                       immutable_out,
                       "Out",
                       output_scale,
                       is_output_unsigned);
    }
817
    ++quantize_immutable_count;
818 819 820
  };

  gpd(graph, handler);
821 822
  AddStatis(quantize_immutable_count);
  LogQuantizedOpsCounter(immutable_type, quantize_immutable_count);
Z
Zuza 已提交
823 824
}

825
void CPUQuantizePass::QuantizeMatmul(Graph* graph, bool with_residual) const {
826 827
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
828
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
829
  matmul_pattern(with_residual);
830 831 832 833 834 835 836 837

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
838
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
839
      LogQuantizationDisabled(matmul_op);
840 841 842 843 844 845
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
846
    if (!IsOpDequantized(prev_op_x) && !IsOpDequantized(prev_op_y)) {
847 848
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No other quantizable operators nearby");
849 850 851 852 853 854
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

855 856 857 858 859 860 861 862 863
    auto has_output_scale = AreScalesPresentForNodes({matmul_out});
    if (with_residual && !has_output_scale) {
      MarkAndLogCannotQuantizeOp(
          matmul_op,
          "Matmul op with ResidualData input cannot be quantized "
          "without output scale.");
      return;
    }

864
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
865 866
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No scale available for the operator");
867
      return;
868
    }
869

870 871 872
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
873 874
    PADDLE_ENFORCE_EQ(is_x_unsigned,
                      is_y_unsigned,
875 876 877 878
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
879 880
                          is_x_unsigned,
                          is_y_unsigned));
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

    if (with_residual) {
      GET_IR_NODE_FROM_SUBGRAPH(
          matmul_residual_data, matmul_residual_data, matmul_pattern);
      if (!AreScalesPresentForNodes({matmul_residual_data})) {
        MarkAndLogCannotQuantizeOp(matmul_op,
                                   "No scale available for the operator");
        return;
      }
      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(matmul_residual_data, &is_residual_unsigned);

      QuantizeInput(g,
                    matmul_op,
                    matmul_residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
    }

903 904 905 906 907 908
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
909
                  "Scale_x");
910 911 912 913 914 915
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
916 917
                  "Scale_y");

918
    // if quantization scale is missing for output tensor, return fp32 data
919
    if (AreScalesPresentForNodes({matmul_out})) {
920 921
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
922 923 924 925 926 927 928
      DequantizeOutput(g,
                       matmul_op,
                       matmul_out,
                       "Out",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
929 930 931
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
932 933 934 935 936

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);
937 938 939
  LogQuantizedOpsCounter("matmul",
                         quantize_matmul_count,
                         (with_residual ? "with residual connection" : ""));
940 941
}

Z
Zuza 已提交
942
void CPUQuantizePass::QuantizeElementwise(
943
    Graph* graph, const std::string& elementwise_type) const {
944 945
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
946
  patterns::ElementwiseOp elementwise_pattern{pattern, name_scope_};
947

948
  elementwise_pattern(elementwise_type);
949

Z
Zuza 已提交
950
  int quantize_elementwise_count = 0;
951 952
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Z
Zuza 已提交
953
    VLOG(4) << "Quantize " + elementwise_type + " op";
954 955
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_op, elementwise_op, elementwise_pattern);
956 957

    // skip if should not be quantized
Z
Zuza 已提交
958 959
    if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
      LogQuantizationDisabled(elementwise_op);
960 961 962
      return;
    }

963 964
    auto x_name = elementwise_op->Op()->Input("X");
    auto y_name = elementwise_op->Op()->Input("Y");
965
    Node *elementwise_x{nullptr}, *elementwise_y{nullptr};
966 967 968 969 970 971 972 973 974

    for (auto& input : elementwise_op->inputs) {
      if (input->Name() == x_name[0]) elementwise_x = input;
      if (input->Name() == y_name[0]) elementwise_y = input;
    }
    if (!elementwise_x || !elementwise_y) {
      return;
    }

975 976
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_out, elementwise_out, elementwise_pattern);
977

978
    if (!AreScalesPresentForNodes(
Z
Zuza 已提交
979
            {elementwise_x, elementwise_y, elementwise_out})) {
980 981
      MarkAndLogCannotQuantizeOp(elementwise_op,
                                 "No scale available for the operator");
982 983 984 985
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
Z
Zuza 已提交
986 987
    auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
988 989 990

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
991 992
      MarkAndLogCannotQuantizeOp(
          elementwise_op, "Elementwise inputs must be of the same type.");
993 994 995
      return;
    }

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
                  "Scale_y");
1010

1011 1012
    bool is_output_unsigned{false};
    auto output_scale =
Z
Zuza 已提交
1013
        GetScaleValueForNode(elementwise_out, &is_output_unsigned);
1014

1015 1016 1017 1018 1019 1020 1021
    DequantizeOutput(g,
                     elementwise_op,
                     elementwise_out,
                     "Out",
                     output_scale,
                     is_output_unsigned,
                     "Scale_out");
1022

Z
Zuza 已提交
1023
    ++quantize_elementwise_count;
1024 1025
  };
  gpd(graph, handler);
Z
Zuza 已提交
1026
  AddStatis(quantize_elementwise_count);
1027
  LogQuantizedOpsCounter(elementwise_type, quantize_elementwise_count);
1028 1029
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

1052
    if (!AreScalesPresentForNodes({x, weight_x})) {
1053
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1054 1055 1056 1057 1058 1059 1060 1061 1062
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1063 1064 1065 1066 1067 1068 1069 1070 1071
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1072 1073 1074

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
1075
                                     weight_scale_tensor.numel()};
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1089
  LogQuantizedOpsCounter("fusion_gru", quantize_count);
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
1116
      MarkAndLogCannotQuantizeOp(gru, "No scale available for the operator");
1117 1118 1119 1120 1121 1122 1123 1124 1125
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1126 1127 1128 1129 1130 1131 1132 1133 1134
    QuantizeInput(g,
                  gru,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

1146
      scale_var_desc.SetShape(phi::vectorize(scale_tensor_src.dims()));
1147 1148 1149 1150 1151 1152
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
1153
          scope->Var(w_scale_node->Name())->GetMutable<phi::DenseTensor>();
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1173
  LogQuantizedOpsCounter("multi_gru", quantize_count);
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
1201
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1202 1203 1204 1205 1206 1207 1208 1209 1210
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1211 1212 1213 1214 1215 1216 1217 1218 1219
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1237
  LogQuantizedOpsCounter("fusion_lstm", quantize_count);
1238 1239
}

1240
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1241
  VLOG(3) << "Quantizing the graph.";
1242 1243
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1244
  FusePassBase::Init(name_scope_, graph);
1245

1246 1247 1248
  PADDLE_ENFORCE_NOT_NULL(
      param_scope(),
      platform::errors::InvalidArgument("Scope cannot be nullptr."));
1249

B
baoachun 已提交
1250
  GetQuantInfo(graph);
1251 1252 1253 1254
  QuantizeConv(graph, "conv2d", false /* with_residual_data */);
  QuantizeConv(graph, "conv2d", true /* with_residual_data */);
  QuantizeConv(graph, "fused_conv2d", false /* with_residual_data */);
  QuantizeConv(graph, "fused_conv2d", true /* with_residual_data */);
1255
  QuantizePool(graph);
1256
  QuantizeConcat(graph);
1257
  QuantizePriorBox(graph);
1258 1259
  QuantizeFc(graph, false /* with_residual_data */);
  QuantizeFc(graph, true /* with_residual_data */);
1260 1261
  QuantizeMatmul(graph, false /* with_residual_data */);
  QuantizeMatmul(graph, true /* with_residual_data */);
1262 1263 1264 1265 1266
  QuantizeImmutable(graph, "reshape2", "X");
  QuantizeImmutable(graph, "transpose2", "X");
  QuantizeImmutable(graph, "slice", "Input");
  QuantizeImmutable(graph, "nearest_interp", "X");
  QuantizeImmutable(graph, "nearest_interp_v2", "X");
P
Paulina Gacek 已提交
1267
  QuantizeImmutable(graph, "split", "X");
Z
Zuza 已提交
1268 1269
  QuantizeElementwise(graph, "elementwise_add");
  QuantizeElementwise(graph, "elementwise_mul");
1270
  QuantizeElementwise(graph, "elementwise_sub");
1271
  QuantizeFusionGru(graph);
1272
  QuantizeMultiGru(graph);
1273
  QuantizeFusionLSTM(graph);
1274 1275 1276 1277 1278 1279 1280 1281
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");