elementwise_div_op.cu 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
15 16
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
W
Wu Yi 已提交
17
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
18 19

namespace ops = paddle::operators;
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseDiv<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    DivRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseDiv<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
    dim3 gird_size = dim3(
        (size / 2 + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseDivCUDAKernel<<<
        gird_size, block_size, 0,
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseDivGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = o / y[col];
    dy[col] = -o * out[col] / y[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
  dim3 gird_size =
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseDivGradCUDAKernel<
      T><<<gird_size, block_size, 0,
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
96

Q
QI JUN 已提交
97
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
98
    elementwise_div,
Q
QI JUN 已提交
99
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
100 101
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
102 103
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int>,
104
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int64_t>);
Q
QI JUN 已提交
105
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
106
    elementwise_div_grad,
Q
QI JUN 已提交
107
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
108 109
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
110 111 112
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
113
                                  int64_t>);
114 115 116 117
REGISTER_OP_CUDA_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
118 119
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::float16>,
120 121 122 123 124 125
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int64_t>);